Line data Source code
1 : #include "../../../../disco/tiles.h"
2 :
3 : #include "../../../../disco/plugin/fd_plugin.h"
4 :
5 : /* Let's say there was a computer, the "leader" computer, that acted as
6 : a bank. Users could send it messages saying they wanted to deposit
7 : money, or transfer it to someone else.
8 :
9 : That's how, for example, Bank of America works but there are problems
10 : with it. One simple problem is: the bank can set your balance to
11 : zero if they don't like you.
12 :
13 : You could try to fix this by having the bank periodically publish the
14 : list of all account balances and transactions. If the customers add
15 : unforgeable signatures to their deposit slips and transfers, then
16 : the bank cannot zero a balance without it being obvious to everyone.
17 :
18 : There's still problems. The bank can't lie about your balance now or
19 : take your money, but it can just not accept deposits on your behalf
20 : by ignoring you.
21 :
22 : You could fix this by getting a few independent banks together, lets
23 : say Bank of America, Bank of England, and Westpac, and having them
24 : rotate who operates the leader computer periodically. If one bank
25 : ignores your deposits, you can just wait and send them to the next
26 : one.
27 :
28 : This is Solana.
29 :
30 : There's still problems of course but they are largely technical. How
31 : do the banks agree who is leader? How do you recover if a leader
32 : misbehaves? How do customers verify the transactions aren't forged?
33 : How do banks receive and publish and verify each others work quickly?
34 : These are the main technical innovations that enable Solana to work
35 : well.
36 :
37 : What about Proof of History?
38 :
39 : One particular niche problem is about the leader schedule. When the
40 : leader computer is moving from one bank to another, the new bank must
41 : wait for the old bank to say it's done and provide a final list of
42 : balances that it can start working off of. But: what if the computer
43 : at the old bank crashes and never says its done?
44 :
45 : Does the new leader just take over at some point? What if the new
46 : leader is malicious, and says the past thousand leaders crashed, and
47 : there have been no transactions for days? How do you check?
48 :
49 : This is what Proof of History solves. Each bank in the network must
50 : constantly do a lot of busywork (compute hashes), even when it is not
51 : leader.
52 :
53 : If the prior thousand leaders crashed, and no transactions happened
54 : in an hour, the new leader would have to show they did about an hour
55 : of busywork for everyone else to believe them.
56 :
57 : A better name for this is proof of skipping. If a leader is skipping
58 : slots (building off of a slot that is not the direct parent), it must
59 : prove that it waited a good amount of time to do so.
60 :
61 : It's not a perfect solution. For one thing, some banks have really
62 : fast computers and can compute a lot of busywork in a short amount of
63 : time, allowing them to skip prior slot(s) anyway. But: there is a
64 : social component that prevents validators from skipping the prior
65 : leader slot. It is easy to detect when this happens and the network
66 : could respond by ignoring their votes or stake.
67 :
68 : You could come up with other schemes: for example, the network could
69 : just use wall clock time. If a new leader publishes a block without
70 : waiting 400 milliseconds for the prior slot to complete, then there
71 : is no "proof of skipping" and the nodes ignore the slot.
72 :
73 : These schemes have a problem in that they are not deterministic
74 : across the network (different computers have different clocks), and
75 : so they will cause frequent forks which are very expensive to
76 : resolve. Even though the proof of history scheme is not perfect,
77 : it is better than any alternative which is not deterministic.
78 :
79 : With all that background, we can now describe at a high level what
80 : this PoH tile actually does,
81 :
82 : (1) Whenever any other leader in the network finishes a slot, and
83 : the slot is determined to be the best one to build off of, this
84 : tile gets "reset" onto that block, the so called "reset slot".
85 :
86 : (2) The tile is constantly doing busy work, hash(hash(hash(...))) on
87 : top of the last reset slot, even when it is not leader.
88 :
89 : (3) When the tile becomes leader, it continues hashing from where it
90 : was. Typically, the prior leader finishes their slot, so the
91 : reset slot will be the parent one, and this tile only publishes
92 : hashes for its own slot. But if prior slots were skipped, then
93 : there might be a whole chain already waiting.
94 :
95 : That's pretty much it. When we are leader, in addition to doing
96 : busywork, we publish ticks and microblocks to the shred tile. A
97 : microblock is a non-empty group of transactions whose hashes are
98 : mixed-in to the chain, while a tick is a periodic stamp of the
99 : current hash, with no transactions (nothing mixed in). We need
100 : to send both to the shred tile, as ticks are important for other
101 : validators to verify in parallel.
102 :
103 : As well, the tile should never become leader for a slot that it has
104 : published anything for, otherwise it may create a duplicate block.
105 :
106 : Some particularly common misunderstandings:
107 :
108 : - PoH is critical to security.
109 :
110 : This largely isn't true. The target hash rate of the network is
111 : so slow (1 hash per 500 nanoseconds) that a malicious leader can
112 : easily catch up if they start from an old hash, and the only
113 : practical attack prevented is the proof of skipping. Most of the
114 : long range attacks in the Solana whitepaper are not relevant.
115 :
116 : - PoH keeps passage of time.
117 :
118 : This is also not true. The way the network keeps time so it can
119 : decide who is leader is that, each leader uses their operating
120 : system clock to time 400 milliseconds and publishes their block
121 : when this timer expires.
122 :
123 : If a leader just hashed as fast as they could, they could publish
124 : a block in tens of milliseconds, and the rest of the network
125 : would happily accept it. This is why the Solana "clock" as
126 : determined by PoH is not accurate and drifts over time.
127 :
128 : - PoH prevents transaction reordering by the leader.
129 :
130 : The leader can, in theory, wait until the very end of their
131 : leader slot to publish anything at all to the network. They can,
132 : in particular, hold all received transactions for 400
133 : milliseconds and then reorder and publish some right at the end
134 : to advantage certain transactions.
135 :
136 : You might be wondering... if all the PoH chain is helping us do is
137 : prove that slots were skipped correctly, why do we need to "mix in"
138 : transactions to the hash value? Or do anything at all for slots
139 : where we don't skip the prior slot?
140 :
141 : It's a good question, and the answer is that this behavior is not
142 : necessary. An ideal implementation of PoH have no concept of ticks
143 : or mixins, and would not be part of the TPU pipeline at all.
144 : Instead, there would be a simple field "skip_proof" on the last
145 : shred we send for a slot, the hash(hash(...)) value. This field
146 : would only be filled in (and only verified by replayers) in cases
147 : where the slot actually skipped a parent.
148 :
149 : Then what is the "clock? In Solana, time is constructed as follows:
150 :
151 : HASHES
152 :
153 : The base unit of time is a hash. Hereafter, any values whose
154 : units are in hashes are called a "hashcnt" to distinguish them
155 : from actual hashed values.
156 :
157 : Agave generally defines a constant duration for each tick
158 : (see below) and then varies the number of hashcnt per tick, but
159 : as we consider the hashcnt the base unit of time, Firedancer and
160 : this PoH implementation defines everything in terms of hashcnt
161 : duration instead.
162 :
163 : In mainnet-beta, testnet, and devnet the hashcnt ticks over
164 : (increments) every 100 nanoseconds. The hashcnt rate is
165 : specified as 500 nanoseconds according to the genesis, but there
166 : are several features which increase the number of hashes per
167 : tick while keeping tick duration constant, which make the time
168 : per hashcnt lower. These features up to and including the
169 : `update_hashes_per_tick6` feature are activated on mainnet-beta,
170 : devnet, and testnet, and are described in the TICKS section
171 : below.
172 :
173 : Other chains and development environments might have a different
174 : hashcnt rate in the genesis, or they might not have activated
175 : the features which increase the rate yet, which we also support.
176 :
177 : In practice, although each validator follows a hashcnt rate of
178 : 100 nanoseconds, the overall observed hashcnt rate of the
179 : network is a little slower than once every 100 nanoseconds,
180 : mostly because there are gaps and clock synchronization issues
181 : during handoff between leaders. This is referred to as clock
182 : drift.
183 :
184 : TICKS
185 :
186 : The leader needs to periodically checkpoint the hash value
187 : associated with a given hashcnt so that they can publish it to
188 : other nodes for verification.
189 :
190 : On mainnet-beta, testnet, and devnet this occurs once every
191 : 62,500 hashcnts, or approximately once every 6.4 microseconds.
192 : This value is determined at genesis time, and according to the
193 : features below, and could be different in development
194 : environments or on other chains which we support.
195 :
196 : Due to protocol limitations, when mixing in transactions to the
197 : proof-of-history chain, it cannot occur on a tick boundary (but
198 : can occur at any other hashcnt).
199 :
200 : Ticks exist mainly so that verification can happen in parallel.
201 : A verifier computer, rather than needing to do hash(hash(...))
202 : all in sequence to verify a proof-of-history chain, can do,
203 :
204 : Core 0: hash(hash(...))
205 : Core 1: hash(hash(...))
206 : Core 2: hash(hash(...))
207 : Core 3: hash(hash(...))
208 : ...
209 :
210 : Between each pair of tick boundaries.
211 :
212 : Solana sometimes calls the current tick the "tick height",
213 : although it makes more sense to think of it as a counter from
214 : zero, it's just the number of ticks since the genesis hash.
215 :
216 : There is a set of features which increase the number of hashcnts
217 : per tick. These are all deployed on mainnet-beta, devnet, and
218 : testnet.
219 :
220 : name: update_hashes_per_tick
221 : id: 3uFHb9oKdGfgZGJK9EHaAXN4USvnQtAFC13Fh5gGFS5B
222 : hashes per tick: 12,500
223 : hashcnt duration: 500 nanos
224 :
225 : name: update_hashes_per_tick2
226 : id: EWme9uFqfy1ikK1jhJs8fM5hxWnK336QJpbscNtizkTU
227 : hashes per tick: 17,500
228 : hashcnt duration: 357.142857143 nanos
229 :
230 : name: update_hashes_per_tick3
231 : id: 8C8MCtsab5SsfammbzvYz65HHauuUYdbY2DZ4sznH6h5
232 : hashes per tick: 27,500
233 : hashcnt duration: 227.272727273 nanos
234 :
235 : name: update_hashes_per_tick4
236 : id: 8We4E7DPwF2WfAN8tRTtWQNhi98B99Qpuj7JoZ3Aikgg
237 : hashes per tick: 47,500
238 : hashcnt duration: 131.578947368 nanos
239 :
240 : name: update_hashes_per_tick5
241 : id: BsKLKAn1WM4HVhPRDsjosmqSg2J8Tq5xP2s2daDS6Ni4
242 : hashes per tick: 57,500
243 : hashcnt duration: 108.695652174 nanos
244 :
245 : name: update_hashes_per_tick6
246 : id: FKu1qYwLQSiehz644H6Si65U5ZQ2cp9GxsyFUfYcuADv
247 : hashes per tick: 62,500
248 : hashcnt duration: 100 nanos
249 :
250 : In development environments, there is a way to configure the
251 : hashcnt per tick to be "none" during genesis, for a so-called
252 : "low power" tick producer. The idea is not to spin cores during
253 : development. This is equivalent to setting the hashcnt per tick
254 : to be 1, and increasing the hashcnt duration to the desired tick
255 : duration.
256 :
257 : SLOTS
258 :
259 : Each leader needs to be leader for a fixed amount of time, which
260 : is called a slot. During a slot, a leader has an opportunity to
261 : receive transactions and produce a block for the network,
262 : although they may miss ("skip") the slot if they are offline or
263 : not behaving.
264 :
265 : In mainnet-beta, testnet, and devnet a slot is 64 ticks, or
266 : 4,000,000 hashcnts, or approximately 400 milliseconds.
267 :
268 : Due to the way the leader schedule is constructed, each leader
269 : is always given at least four (4) consecutive slots in the
270 : schedule. This means when becoming leader you will be leader
271 : for at least 4 slots, or 1.6 seconds.
272 :
273 : It is rare, although can happen that a leader gets more than 4
274 : consecutive slots (eg, 8, or 12), if they are lucky with the
275 : leader schedule generation.
276 :
277 : The number of ticks in a slot is fixed at genesis time, and
278 : could be different for development or other chains, which we
279 : support. There is nothing special about 4 leader slots in a
280 : row, and this might be changed in future, and the proof of
281 : history makes no assumptions that this is the case.
282 :
283 : EPOCHS
284 :
285 : Infrequently, the network needs to do certain housekeeping,
286 : mainly things like collecting rent and deciding on the leader
287 : schedule. The length of an epoch is fixed on mainnet-beta,
288 : devnet and testnet at 420,000 slots, or around ~2 (1.94) days.
289 : This value is fixed at genesis time, and could be different for
290 : other chains including development, which we support. Typically
291 : in development, epochs are every 8,192 slots, or around ~1 hour
292 : (54.61 minutes), although it depends on the number of ticks per
293 : slot and the target hashcnt rate of the genesis as well.
294 :
295 : In development, epochs need not be a fixed length either. There
296 : is a "warmup" option, where epochs start short and grow, which
297 : is useful for quickly warming up stake during development.
298 :
299 : The epoch is important because it is the only time the leader
300 : schedule is updated. The leader schedule is a list of which
301 : leader is leader for which slot, and is generated by a special
302 : algorithm that is deterministic and known to all nodes.
303 :
304 : The leader schedule is computed one epoch in advance, so that
305 : at slot T, we always know who will be leader up until the end
306 : of slot T+EPOCH_LENGTH. Specifically, the leader schedule for
307 : epoch N is computed during the epoch boundary crossing from
308 : N-2 to N-1. For mainnet-beta, the slots per epoch is fixed and
309 : will always be 420,000. */
310 :
311 : #include "../../../../ballet/pack/fd_pack.h"
312 : #include "../../../../ballet/sha256/fd_sha256.h"
313 : #include "../../../../disco/metrics/fd_metrics.h"
314 : #include "../../../../disco/topo/fd_pod_format.h"
315 : #include "../../../../disco/shred/fd_shredder.h"
316 : #include "../../../../disco/shred/fd_stake_ci.h"
317 : #include "../../../../disco/bank/fd_bank_abi.h"
318 : #include "../../../../disco/keyguard/fd_keyload.h"
319 : #include "../../../../disco/metrics/generated/fd_metrics_poh.h"
320 : #include "../../../../flamenco/leaders/fd_leaders.h"
321 :
322 : /* The maximum number of microblocks that pack is allowed to pack into a
323 : single slot. This is not consensus critical, and pack could, if we
324 : let it, produce as many microblocks as it wants, and the slot would
325 : still be valid.
326 :
327 : We have this here instead so that PoH can estimate slot completion,
328 : and keep the hashcnt up to date as pack progresses through packing
329 : the slot. If this upper bound was not enforced, PoH could tick to
330 : the last hash of the slot and have no hashes left to mixin incoming
331 : microblocks from pack, so this upper bound is a coordination
332 : mechanism so that PoH can progress hashcnts while the slot is active,
333 : and know that pack will not need those hashcnts later to do mixins. */
334 0 : #define MAX_MICROBLOCKS_PER_SLOT (32768UL)
335 :
336 : /* When we are hashing in the background in case a prior leader skips
337 : their slot, we need to store the result of each tick hash so we can
338 : publish them when we become leader. The network requires at least
339 : one leader slot to publish in each epoch for the leader schedule to
340 : generate, so in the worst case we might need two full epochs of slots
341 : to store the hashes. (Eg, if epoch T only had a published slot in
342 : position 0 and epoch T+1 only had a published slot right at the end).
343 :
344 : There is a tighter bound: the block data limit of mainnet-beta is
345 : currently FD_PACK_MAX_DATA_PER_BLOCK, or 27,332,342 bytes per slot.
346 : At 48 bytes per tick, it is not possible to publish a slot that skips
347 : 569,424 or more prior slots. */
348 0 : #define MAX_SKIPPED_TICKS (1UL+(FD_PACK_MAX_DATA_PER_BLOCK/48UL))
349 :
350 0 : #define IN_KIND_BANK (0)
351 0 : #define IN_KIND_PACK (1)
352 0 : #define IN_KIND_STAKE (2)
353 :
354 :
355 : typedef struct {
356 : fd_wksp_t * mem;
357 : ulong chunk0;
358 : ulong wmark;
359 : } fd_poh_in_ctx_t;
360 :
361 : typedef struct {
362 : ulong idx;
363 : fd_wksp_t * mem;
364 : ulong chunk0;
365 : ulong wmark;
366 : ulong chunk;
367 : } fd_poh_out_ctx_t;
368 :
369 : typedef struct {
370 : fd_stem_context_t * stem;
371 :
372 : /* Static configuration determined at genesis creation time. See
373 : long comment above for more information. */
374 : ulong tick_duration_ns;
375 : ulong hashcnt_per_tick;
376 : ulong ticks_per_slot;
377 :
378 : /* Derived from the above configuration, but we precompute it. */
379 : double slot_duration_ns;
380 : double hashcnt_duration_ns;
381 : ulong hashcnt_per_slot;
382 : /* Constant, fixed at initialization. The maximum number of
383 : microblocks that the pack tile can publish in each slot. */
384 : ulong max_microblocks_per_slot;
385 :
386 : /* The current slot and hashcnt within that slot of the proof of
387 : history, including hashes we have been producing in the background
388 : while waiting for our next leader slot. */
389 : ulong slot;
390 : ulong hashcnt;
391 : ulong cus_used;
392 :
393 : /* When we send a microblock on to the shred tile, we need to tell
394 : it how many hashes there have been since the last microblock, so
395 : this tracks the hashcnt of the last published microblock.
396 :
397 : If we are skipping slots prior to our leader slot, the last_slot
398 : will be quite old, and potentially much larger than the number of
399 : hashcnts in one slot. */
400 : ulong last_slot;
401 : ulong last_hashcnt;
402 :
403 : /* If we have published a tick or a microblock for a particular slot
404 : to the shred tile, we should never become leader for that slot
405 : again, otherwise we could publish a duplicate block.
406 :
407 : This value tracks the max slot that we have published a tick or
408 : microblock for so we can prevent this. */
409 : ulong highwater_leader_slot;
410 :
411 : /* See how this field is used below. If we have sequential leader
412 : slots, we don't reset the expected slot end time between the two,
413 : to prevent clock drift. If we didn't do this, our 2nd slot would
414 : end 400ms + `time_for_replay_to_move_slot_and_reset_poh` after
415 : our 1st, rather than just strictly 400ms. */
416 : int lagged_consecutive_leader_start;
417 : ulong expect_sequential_leader_slot;
418 :
419 : /* There's a race condition ... let's say two banks A and B, bank A
420 : processes some transactions, then releases the account locks, and
421 : sends the microblock to PoH to be stamped. Pack now re-packs the
422 : same accounts with a new microblock, sends to bank B, bank B
423 : executes and sends the microblock to PoH, and this all happens fast
424 : enough that PoH picks the 2nd block to stamp before the 1st. The
425 : accounts database changes now are misordered with respect to PoH so
426 : replay could fail.
427 :
428 : To prevent this race, we order all microblocks and only process
429 : them in PoH in the order they are produced by pack. This is a
430 : little bit over-strict, we just need to ensure that microblocks
431 : with conflicting accounts execute in order, but this is easiest to
432 : implement for now. */
433 : ulong expect_microblock_idx;
434 :
435 : /* The PoH tile must never drop microblocks that get committed by the
436 : bank, so it needs to always be able to mixin a microblock hash.
437 : Mixing in requires incrementing the hashcnt, so we need to ensure
438 : at all times that there is enough hascnts left in the slot to
439 : mixin whatever future microblocks pack might produce for it.
440 :
441 : This value tracks that. At any time, max_microblocks_per_slot
442 : - microblocks_lower_bound is an upper bound on the maximum number
443 : of microblocks that might still be received in this slot. */
444 : ulong microblocks_lower_bound;
445 :
446 : uchar __attribute__((aligned(32UL))) hash[ 32 ];
447 :
448 : /* When we are not leader, we need to save the hashes that were
449 : produced in case the prior leader skips. If they skip, we will
450 : replay these skipped hashes into our next leader bank so that
451 : the slot hashes sysvar can be updated correctly, and also publish
452 : them to peer nodes as part of our outgoing shreds. */
453 : uchar skipped_tick_hashes[ MAX_SKIPPED_TICKS ][ 32 ];
454 :
455 : /* The timestamp in nanoseconds of when the reset slot was received.
456 : This is the timestamp we are building on top of to determine when
457 : our next leader slot starts. */
458 : long reset_slot_start_ns;
459 :
460 : /* The timestamp in nanoseconds of when we got the bank for the
461 : current leader slot. */
462 : long leader_bank_start_ns;
463 :
464 : /* The hashcnt corresponding to the start of the current reset slot. */
465 : ulong reset_slot;
466 :
467 : /* The hashcnt at which our next leader slot begins, or ULONG max if
468 : we have no known next leader slot. */
469 : ulong next_leader_slot;
470 :
471 : /* If an in progress frag should be skipped */
472 : int skip_frag;
473 :
474 : ulong max_active_descendant;
475 :
476 : /* If we currently are the leader according the clock AND we have
477 : received the leader bank for the slot from the replay stage,
478 : this value will be non-NULL.
479 :
480 : Note that we might be inside our leader slot, but not have a bank
481 : yet, in which case this will still be NULL.
482 :
483 : It will be NULL for a brief race period between consecutive leader
484 : slots, as we ping-pong back to replay stage waiting for a new bank.
485 :
486 : Agave refers to this as the "working bank". */
487 : void const * current_leader_bank;
488 :
489 : fd_sha256_t * sha256;
490 :
491 : fd_stake_ci_t * stake_ci;
492 :
493 : fd_pubkey_t identity_key;
494 :
495 : /* The Agave client needs to be notified when the leader changes,
496 : so that they can resume the replay stage if it was suspended waiting. */
497 : void * signal_leader_change;
498 :
499 : /* These are temporarily set in during_frag so they can be used in
500 : after_frag once the frag has been validated as not overrun. */
501 : uchar _txns[ USHORT_MAX ];
502 : fd_microblock_trailer_t _microblock_trailer[ 1 ];
503 :
504 : int in_kind[ 64 ];
505 : fd_poh_in_ctx_t in[ 64 ];
506 :
507 : fd_poh_out_ctx_t shred_out[ 1 ];
508 : fd_poh_out_ctx_t pack_out[ 1 ];
509 : fd_poh_out_ctx_t plugin_out[ 1 ];
510 :
511 : fd_histf_t begin_leader_delay[ 1 ];
512 : fd_histf_t first_microblock_delay[ 1 ];
513 : fd_histf_t slot_done_delay[ 1 ];
514 : } fd_poh_ctx_t;
515 :
516 : /* The PoH recorder is implemented in Firedancer but for now needs to
517 : work with Agave, so we have a locking scheme for them to
518 : co-operate.
519 :
520 : This is because the PoH tile lives in the Agave memory address
521 : space and their version of concurrency is locking the PoH recorder
522 : and reading arbitrary fields.
523 :
524 : So we allow them to lock the PoH tile, although with a very bad (for
525 : them) locking scheme. By default, the tile has full and exclusive
526 : access to the data. If part of Agave wishes to read/write they
527 : can either,
528 :
529 : 1. Rewrite their concurrency to message passing based on mcache
530 : (preferred, but not feasible).
531 : 2. Signal to the tile they wish to acquire the lock, by setting
532 : fd_poh_waiting_lock to 1.
533 :
534 : During after_credit, the tile will check if the waiting lock is set
535 : to 1, and if so, set the returned lock to 1, indicating to the waiter
536 : that they may now proceed.
537 :
538 : When the waiter is done reading and writing, they restore the
539 : returned lock value back to zero, and the POH tile continues with its
540 : day. */
541 :
542 : static fd_poh_ctx_t * fd_poh_global_ctx;
543 :
544 : static volatile ulong fd_poh_waiting_lock __attribute__((aligned(128UL)));
545 : static volatile ulong fd_poh_returned_lock __attribute__((aligned(128UL)));
546 :
547 : /* Agave also needs to write to some mcaches, so we trampoline
548 : that via. the PoH tile as well. */
549 :
550 : struct poh_link {
551 : fd_frag_meta_t * mcache;
552 : ulong depth;
553 : ulong tx_seq;
554 :
555 : void * mem;
556 : void * dcache;
557 : ulong chunk0;
558 : ulong wmark;
559 : ulong chunk;
560 :
561 : ulong cr_avail;
562 : ulong rx_cnt;
563 : ulong * rx_fseqs[ 32UL ];
564 : };
565 :
566 : typedef struct poh_link poh_link_t;
567 :
568 : poh_link_t gossip_dedup;
569 : poh_link_t stake_out;
570 : poh_link_t crds_shred;
571 : poh_link_t replay_resolv;
572 :
573 : poh_link_t replay_plugin;
574 : poh_link_t gossip_plugin;
575 : poh_link_t start_progress_plugin;
576 : poh_link_t vote_listener_plugin;
577 :
578 : static void
579 0 : poh_link_wait_credit( poh_link_t * link ) {
580 0 : if( FD_LIKELY( link->cr_avail ) ) return;
581 :
582 0 : while( 1 ) {
583 0 : ulong cr_query = ULONG_MAX;
584 0 : for( ulong i=0UL; i<link->rx_cnt; i++ ) {
585 0 : ulong const * _rx_seq = link->rx_fseqs[ i ];
586 0 : ulong rx_seq = FD_VOLATILE_CONST( *_rx_seq );
587 0 : ulong rx_cr_query = (ulong)fd_long_max( (long)link->depth - fd_long_max( fd_seq_diff( link->tx_seq, rx_seq ), 0L ), 0L );
588 0 : cr_query = fd_ulong_min( rx_cr_query, cr_query );
589 0 : }
590 0 : if( FD_LIKELY( cr_query>0UL ) ) {
591 0 : link->cr_avail = cr_query;
592 0 : break;
593 0 : }
594 0 : FD_SPIN_PAUSE();
595 0 : }
596 0 : }
597 :
598 : static void
599 : poh_link_publish( poh_link_t * link,
600 : ulong sig,
601 : uchar const * data,
602 0 : ulong data_sz ) {
603 0 : while( FD_UNLIKELY( !FD_VOLATILE_CONST( link->mcache ) ) ) FD_SPIN_PAUSE();
604 0 : if( FD_UNLIKELY( !link->mem ) ) return; /* link not enabled, don't publish */
605 0 : poh_link_wait_credit( link );
606 :
607 0 : uchar * dst = (uchar *)fd_chunk_to_laddr( link->mem, link->chunk );
608 0 : fd_memcpy( dst, data, data_sz );
609 0 : ulong tspub = (ulong)fd_frag_meta_ts_comp( fd_tickcount() );
610 0 : fd_mcache_publish( link->mcache, link->depth, link->tx_seq, sig, link->chunk, data_sz, 0UL, 0UL, tspub );
611 0 : link->chunk = fd_dcache_compact_next( link->chunk, data_sz, link->chunk0, link->wmark );
612 0 : link->cr_avail--;
613 0 : link->tx_seq++;
614 0 : }
615 :
616 : static void
617 : poh_link_init( poh_link_t * link,
618 : fd_topo_t * topo,
619 : fd_topo_tile_t * tile,
620 0 : ulong out_idx ) {
621 0 : fd_topo_link_t * topo_link = &topo->links[ tile->out_link_id[ out_idx ] ];
622 0 : fd_topo_wksp_t * wksp = &topo->workspaces[ topo->objs[ topo_link->dcache_obj_id ].wksp_id ];
623 :
624 0 : link->mem = wksp->wksp;
625 0 : link->depth = fd_mcache_depth( topo_link->mcache );
626 0 : link->tx_seq = 0UL;
627 0 : link->dcache = topo_link->dcache;
628 0 : link->chunk0 = fd_dcache_compact_chunk0( wksp->wksp, topo_link->dcache );
629 0 : link->wmark = fd_dcache_compact_wmark ( wksp->wksp, topo_link->dcache, topo_link->mtu );
630 0 : link->chunk = link->chunk0;
631 0 : link->cr_avail = 0UL;
632 0 : link->rx_cnt = 0UL;
633 0 : for( ulong i=0UL; i<topo->tile_cnt; i++ ) {
634 0 : fd_topo_tile_t * _tile = &topo->tiles[ i ];
635 0 : for( ulong j=0UL; j<_tile->in_cnt; j++ ) {
636 0 : if( _tile->in_link_id[ j ]==topo_link->id && _tile->in_link_reliable[ j ] ) {
637 0 : FD_TEST( link->rx_cnt<32UL );
638 0 : link->rx_fseqs[ link->rx_cnt++ ] = _tile->in_link_fseq[ j ];
639 0 : break;
640 0 : }
641 0 : }
642 0 : }
643 0 : FD_COMPILER_MFENCE();
644 0 : link->mcache = topo_link->mcache;
645 0 : FD_COMPILER_MFENCE();
646 0 : FD_TEST( link->mcache );
647 0 : }
648 :
649 : /* To help show correctness, functions that might be called from
650 : Rust, either directly or indirectly, have this fake "attribute"
651 : CALLED_FROM_RUST, which is actually nothing. Calls from Rust
652 : typically execute on threads did not call fd_boot, so they do not
653 : have the typical FD_TL variables. In particular, they cannot use
654 : normal metrics, and their log messages don't have full context.
655 : Additionally, Rust functions marked CALLED_FROM_RUST cannot call back
656 : into a C fd_ext function without causing a deadlock (although the
657 : other Rust fd_ext functions have a similar problem).
658 :
659 : To prevent annotation from polluting the whole codebase, calls to
660 : functions outside this file are manually checked and marked as being
661 : safe at each call rather than annotated. */
662 : #define CALLED_FROM_RUST
663 :
664 : static CALLED_FROM_RUST fd_poh_ctx_t *
665 0 : fd_ext_poh_write_lock( void ) {
666 0 : for(;;) {
667 : /* Acquire the waiter lock to make sure we are the first writer in the queue. */
668 0 : if( FD_LIKELY( !FD_ATOMIC_CAS( &fd_poh_waiting_lock, 0UL, 1UL) ) ) break;
669 0 : FD_SPIN_PAUSE();
670 0 : }
671 0 : FD_COMPILER_MFENCE();
672 0 : for(;;) {
673 : /* Now wait for the tile to tell us we can proceed. */
674 0 : if( FD_LIKELY( FD_VOLATILE_CONST( fd_poh_returned_lock ) ) ) break;
675 0 : FD_SPIN_PAUSE();
676 0 : }
677 0 : FD_COMPILER_MFENCE();
678 0 : return fd_poh_global_ctx;
679 0 : }
680 :
681 : static CALLED_FROM_RUST void
682 0 : fd_ext_poh_write_unlock( void ) {
683 0 : FD_COMPILER_MFENCE();
684 0 : FD_VOLATILE( fd_poh_returned_lock ) = 0UL;
685 0 : }
686 :
687 : /* The PoH tile needs to interact with the Agave address space to
688 : do certain operations that Firedancer hasn't reimplemented yet, a.k.a
689 : transaction execution. We have Agave export some wrapper
690 : functions that we call into during regular tile execution. These do
691 : not need any locking, since they are called serially from the single
692 : PoH tile. */
693 :
694 : extern CALLED_FROM_RUST void fd_ext_bank_acquire( void const * bank );
695 : extern CALLED_FROM_RUST void fd_ext_bank_release( void const * bank );
696 : extern CALLED_FROM_RUST void fd_ext_poh_signal_leader_change( void * sender );
697 : extern void fd_ext_poh_register_tick( void const * bank, uchar const * hash );
698 :
699 : /* fd_ext_poh_initialize is called by Agave on startup to
700 : initialize the PoH tile with some static configuration, and the
701 : initial reset slot and hash which it retrieves from a snapshot.
702 :
703 : This function is called by some random Agave thread, but
704 : it blocks booting of the PoH tile. The tile will spin until it
705 : determines that this initialization has happened.
706 :
707 : signal_leader_change is an opaque Rust object that is used to
708 : tell the replay stage that the leader has changed. It is a
709 : Box::into_raw(Arc::increment_strong(crossbeam::Sender)), so it
710 : has infinite lifetime unless this C code releases the refcnt.
711 :
712 : It can be used with `fd_ext_poh_signal_leader_change` which
713 : will just issue a nonblocking send on the channel. */
714 :
715 : CALLED_FROM_RUST void
716 : fd_ext_poh_initialize( ulong tick_duration_ns, /* See clock comments above, will be 6.4 microseconds for mainnet-beta. */
717 : ulong hashcnt_per_tick, /* See clock comments above, will be 62,500 for mainnet-beta. */
718 : ulong ticks_per_slot, /* See clock comments above, will almost always be 64. */
719 : ulong tick_height, /* The counter (height) of the tick to start hashing on top of. */
720 : uchar const * last_entry_hash, /* Points to start of a 32 byte region of memory, the hash itself at the tick height. */
721 0 : void * signal_leader_change /* See comment above. */ ) {
722 0 : FD_COMPILER_MFENCE();
723 0 : for(;;) {
724 : /* Make sure the ctx is initialized before trying to take the lock. */
725 0 : if( FD_LIKELY( FD_VOLATILE_CONST( fd_poh_global_ctx ) ) ) break;
726 0 : FD_SPIN_PAUSE();
727 0 : }
728 0 : fd_poh_ctx_t * ctx = fd_ext_poh_write_lock();
729 :
730 0 : ctx->slot = tick_height/ticks_per_slot;
731 0 : ctx->hashcnt = 0UL;
732 0 : ctx->cus_used = 0UL;
733 0 : ctx->last_slot = ctx->slot;
734 0 : ctx->last_hashcnt = 0UL;
735 0 : ctx->reset_slot = ctx->slot;
736 0 : ctx->reset_slot_start_ns = fd_log_wallclock(); /* safe to call from Rust */
737 :
738 0 : memcpy( ctx->hash, last_entry_hash, 32UL );
739 :
740 0 : ctx->signal_leader_change = signal_leader_change;
741 :
742 : /* Static configuration about the clock. */
743 0 : ctx->tick_duration_ns = tick_duration_ns;
744 0 : ctx->hashcnt_per_tick = hashcnt_per_tick;
745 0 : ctx->ticks_per_slot = ticks_per_slot;
746 :
747 : /* Recompute derived information about the clock. */
748 0 : ctx->slot_duration_ns = (double)ticks_per_slot*(double)tick_duration_ns;
749 0 : ctx->hashcnt_duration_ns = (double)tick_duration_ns/(double)hashcnt_per_tick;
750 0 : ctx->hashcnt_per_slot = ticks_per_slot*hashcnt_per_tick;
751 :
752 0 : if( FD_UNLIKELY( ctx->hashcnt_per_tick==1UL ) ) {
753 : /* Low power producer, maximum of one microblock per tick in the slot */
754 0 : ctx->max_microblocks_per_slot = ctx->ticks_per_slot;
755 0 : } else {
756 : /* See the long comment in after_credit for this limit */
757 0 : ctx->max_microblocks_per_slot = fd_ulong_min( MAX_MICROBLOCKS_PER_SLOT, ctx->ticks_per_slot*(ctx->hashcnt_per_tick-1UL) );
758 0 : }
759 :
760 0 : fd_ext_poh_write_unlock();
761 0 : }
762 :
763 : /* fd_ext_poh_acquire_bank gets the current leader bank if there is one
764 : currently active. PoH might think we are leader without having a
765 : leader bank if the replay stage has not yet noticed we are leader.
766 :
767 : The bank that is returned is owned the caller, and must be converted
768 : to an Arc<Bank> by calling Arc::from_raw() on it. PoH increments the
769 : reference count before returning the bank, so that it can also keep
770 : its internal copy.
771 :
772 : If there is no leader bank, NULL is returned. In this case, the
773 : caller should not call `Arc::from_raw()`. */
774 :
775 : CALLED_FROM_RUST void const *
776 0 : fd_ext_poh_acquire_leader_bank( void ) {
777 0 : fd_poh_ctx_t * ctx = fd_ext_poh_write_lock();
778 0 : void const * bank = NULL;
779 0 : if( FD_LIKELY( ctx->current_leader_bank ) ) {
780 : /* Clone refcount before we release the lock. */
781 0 : fd_ext_bank_acquire( ctx->current_leader_bank );
782 0 : bank = ctx->current_leader_bank;
783 0 : }
784 0 : fd_ext_poh_write_unlock();
785 0 : return bank;
786 0 : }
787 :
788 : /* fd_ext_poh_reset_slot returns the slot height one above the last good
789 : (unskipped) slot we are building on top of. This is always a good
790 : known value, and will not be ULONG_MAX. */
791 :
792 : CALLED_FROM_RUST ulong
793 0 : fd_ext_poh_reset_slot( void ) {
794 0 : fd_poh_ctx_t * ctx = fd_ext_poh_write_lock();
795 0 : ulong reset_slot = ctx->reset_slot;
796 0 : fd_ext_poh_write_unlock();
797 0 : return reset_slot;
798 0 : }
799 :
800 : CALLED_FROM_RUST void
801 0 : fd_ext_poh_update_active_descendant( ulong max_active_descendant ) {
802 0 : fd_poh_ctx_t * ctx = fd_ext_poh_write_lock();
803 0 : ctx->max_active_descendant = max_active_descendant;
804 0 : fd_ext_poh_write_unlock();
805 0 : }
806 :
807 : /* fd_ext_poh_reached_leader_slot returns 1 if we have reached a slot
808 : where we are leader. This is used by the replay stage to determine
809 : if it should create a new leader bank descendant of the prior reset
810 : slot block.
811 :
812 : Sometimes, even when we reach our slot we do not return 1, as we are
813 : giving a grace period to the prior leader to finish publishing their
814 : block.
815 :
816 : out_leader_slot is the slot height of the leader slot we reached, and
817 : reset_slot is the slot height of the last good (unskipped) slot we
818 : are building on top of. */
819 :
820 : CALLED_FROM_RUST int
821 : fd_ext_poh_reached_leader_slot( ulong * out_leader_slot,
822 0 : ulong * out_reset_slot ) {
823 0 : fd_poh_ctx_t * ctx = fd_ext_poh_write_lock();
824 :
825 0 : *out_leader_slot = ctx->next_leader_slot;
826 0 : *out_reset_slot = ctx->reset_slot;
827 :
828 0 : if( FD_UNLIKELY( ctx->next_leader_slot==ULONG_MAX ||
829 0 : ctx->slot<ctx->next_leader_slot ) ) {
830 : /* Didn't reach our leader slot yet. */
831 0 : fd_ext_poh_write_unlock();
832 0 : return 0;
833 0 : }
834 :
835 0 : if( FD_LIKELY( ctx->reset_slot==ctx->next_leader_slot ) ) {
836 : /* We were reset onto our leader slot, because the prior leader
837 : completed theirs, so we should start immediately, no need for a
838 : grace period. */
839 0 : fd_ext_poh_write_unlock();
840 0 : return 1;
841 0 : }
842 :
843 0 : long now_ns = fd_log_wallclock();
844 0 : long expected_start_time_ns = ctx->reset_slot_start_ns + (long)((double)(ctx->next_leader_slot-ctx->reset_slot)*ctx->slot_duration_ns);
845 :
846 : /* If a prior leader is still in the process of publishing their slot,
847 : delay ours to let them finish ... unless they are so delayed that
848 : we risk getting skipped by the leader following us. 1.2 seconds
849 : is a reasonable default here, although any value between 0 and 1.6
850 : seconds could be considered reasonable. This is arbitrary and
851 : chosen due to intuition. */
852 :
853 0 : if( FD_UNLIKELY( now_ns<expected_start_time_ns+(long)(3.0*ctx->slot_duration_ns) ) ) {
854 : /* If the max_active_descendant is >= next_leader_slot, we waited
855 : too long and a leader after us started publishing to try and skip
856 : us. Just start our leader slot immediately, we mgiht win ... */
857 :
858 0 : if( FD_LIKELY( ctx->max_active_descendant>=ctx->reset_slot && ctx->max_active_descendant<ctx->next_leader_slot ) ) {
859 : /* If one of the leaders between the reset slot and our leader
860 : slot is in the process of publishing (they have a descendant
861 : bank that is in progress of being replayed), then keep waiting.
862 : We probably wouldn't get a leader slot out before they
863 : finished.
864 :
865 : Unless... we are past the deadline to start our slot by more
866 : than 1.2 seconds, in which case we should probably start it to
867 : avoid getting skipped by the leader behind us. */
868 0 : fd_ext_poh_write_unlock();
869 0 : return 0;
870 0 : }
871 0 : }
872 :
873 0 : fd_ext_poh_write_unlock();
874 0 : return 1;
875 0 : }
876 :
877 : CALLED_FROM_RUST static inline void
878 : publish_plugin_slot_start( fd_poh_ctx_t * ctx,
879 : ulong slot,
880 0 : ulong parent_slot ) {
881 0 : if( FD_UNLIKELY( !ctx->plugin_out->mem ) ) return;
882 :
883 0 : fd_plugin_msg_slot_start_t * slot_start = (fd_plugin_msg_slot_start_t *)fd_chunk_to_laddr( ctx->plugin_out->mem, ctx->plugin_out->chunk );
884 0 : *slot_start = (fd_plugin_msg_slot_start_t){ .slot = slot, .parent_slot = parent_slot };
885 0 : fd_stem_publish( ctx->stem, ctx->plugin_out->idx, FD_PLUGIN_MSG_SLOT_START, ctx->plugin_out->chunk, sizeof(fd_plugin_msg_slot_start_t), 0UL, 0UL, 0UL );
886 0 : ctx->plugin_out->chunk = fd_dcache_compact_next( ctx->plugin_out->chunk, sizeof(fd_plugin_msg_slot_start_t), ctx->plugin_out->chunk0, ctx->plugin_out->wmark );
887 0 : }
888 :
889 : CALLED_FROM_RUST static inline void
890 : publish_plugin_slot_end( fd_poh_ctx_t * ctx,
891 : ulong slot,
892 0 : ulong cus_used ) {
893 0 : if( FD_UNLIKELY( !ctx->plugin_out->mem ) ) return;
894 :
895 0 : fd_plugin_msg_slot_end_t * slot_end = (fd_plugin_msg_slot_end_t *)fd_chunk_to_laddr( ctx->plugin_out->mem, ctx->plugin_out->chunk );
896 0 : *slot_end = (fd_plugin_msg_slot_end_t){ .slot = slot, .cus_used = cus_used };
897 0 : fd_stem_publish( ctx->stem, ctx->plugin_out->idx, FD_PLUGIN_MSG_SLOT_END, ctx->plugin_out->chunk, sizeof(fd_plugin_msg_slot_end_t), 0UL, 0UL, 0UL );
898 0 : ctx->plugin_out->chunk = fd_dcache_compact_next( ctx->plugin_out->chunk, sizeof(fd_plugin_msg_slot_end_t), ctx->plugin_out->chunk0, ctx->plugin_out->wmark );
899 0 : }
900 :
901 : CALLED_FROM_RUST static void
902 : publish_became_leader( fd_poh_ctx_t * ctx,
903 0 : ulong slot ) {
904 0 : double tick_per_ns = fd_tempo_tick_per_ns( NULL );
905 0 : fd_histf_sample( ctx->begin_leader_delay, (ulong)((double)(fd_log_wallclock()-ctx->reset_slot_start_ns)/tick_per_ns) );
906 :
907 0 : if( FD_UNLIKELY( ctx->lagged_consecutive_leader_start ) ) {
908 : /* If we are mirroring Agave behavior, the wall clock gets reset
909 : here so we don't count time spent waiting for a bank to freeze
910 : or replay stage to actually start the slot towards our 400ms.
911 :
912 : See extended comments in the config file on this option. */
913 0 : ctx->reset_slot_start_ns = fd_log_wallclock() - (long)((double)(slot-ctx->reset_slot)*ctx->slot_duration_ns);
914 0 : }
915 :
916 0 : long slot_start_ns = ctx->reset_slot_start_ns + (long)((double)(slot-ctx->reset_slot)*ctx->slot_duration_ns);
917 :
918 : /* No need to check flow control, there are always credits became when we
919 : are leader, we will not "become" leader again until we are done, so at
920 : most one frag in flight at a time. */
921 :
922 0 : uchar * dst = (uchar *)fd_chunk_to_laddr( ctx->pack_out->mem, ctx->pack_out->chunk );
923 :
924 0 : fd_became_leader_t * leader = (fd_became_leader_t *)dst;
925 0 : leader->slot_start_ns = slot_start_ns;
926 0 : leader->slot_end_ns = (long)((double)slot_start_ns + ctx->slot_duration_ns);
927 0 : leader->bank = ctx->current_leader_bank;
928 0 : leader->max_microblocks_in_slot = ctx->max_microblocks_per_slot;
929 0 : leader->ticks_per_slot = ctx->ticks_per_slot;
930 0 : leader->total_skipped_ticks = ctx->ticks_per_slot*(slot-ctx->reset_slot);
931 :
932 0 : if( FD_UNLIKELY( leader->ticks_per_slot+leader->total_skipped_ticks>=MAX_SKIPPED_TICKS ) )
933 0 : FD_LOG_ERR(( "Too many skipped ticks %lu for slot %lu, chain must halt", leader->ticks_per_slot+leader->total_skipped_ticks, slot ));
934 :
935 0 : ulong sig = fd_disco_poh_sig( slot, POH_PKT_TYPE_BECAME_LEADER, 0UL );
936 0 : fd_stem_publish( ctx->stem, ctx->pack_out->idx, sig, ctx->pack_out->chunk, sizeof(fd_became_leader_t), 0UL, 0UL, 0UL );
937 0 : ctx->pack_out->chunk = fd_dcache_compact_next( ctx->pack_out->chunk, sizeof(fd_became_leader_t), ctx->pack_out->chunk0, ctx->pack_out->wmark );
938 0 : }
939 :
940 : /* The PoH tile knows when it should become leader by waiting for its
941 : leader slot (with the operating system clock). This function is so
942 : that when it becomes the leader, it can be told what the leader bank
943 : is by the replay stage. See the notes in the long comment above for
944 : more on how this works. */
945 :
946 : CALLED_FROM_RUST void
947 : fd_ext_poh_begin_leader( void const * bank,
948 : ulong slot,
949 0 : ulong hashcnt_per_tick ) {
950 0 : fd_poh_ctx_t * ctx = fd_ext_poh_write_lock();
951 :
952 0 : FD_TEST( !ctx->current_leader_bank );
953 :
954 0 : if( FD_UNLIKELY( slot!=ctx->slot ) ) FD_LOG_ERR(( "Trying to begin leader slot %lu but we are now on slot %lu", slot, ctx->slot ));
955 0 : if( FD_UNLIKELY( slot!=ctx->next_leader_slot ) ) FD_LOG_ERR(( "Trying to begin leader slot %lu but next leader slot is %lu", slot, ctx->next_leader_slot ));
956 :
957 0 : if( FD_UNLIKELY( ctx->hashcnt_per_tick!=hashcnt_per_tick ) ) {
958 0 : FD_LOG_WARNING(( "hashes per tick changed from %lu to %lu", ctx->hashcnt_per_tick, hashcnt_per_tick ));
959 :
960 : /* Recompute derived information about the clock. */
961 0 : ctx->hashcnt_duration_ns = (double)ctx->tick_duration_ns/(double)hashcnt_per_tick;
962 0 : ctx->hashcnt_per_slot = ctx->ticks_per_slot*hashcnt_per_tick;
963 0 : ctx->hashcnt_per_tick = hashcnt_per_tick;
964 :
965 0 : if( FD_UNLIKELY( ctx->hashcnt_per_tick==1UL ) ) {
966 : /* Low power producer, maximum of one microblock per tick in the slot */
967 0 : ctx->max_microblocks_per_slot = ctx->ticks_per_slot;
968 0 : } else {
969 : /* See the long comment in after_credit for this limit */
970 0 : ctx->max_microblocks_per_slot = fd_ulong_min( MAX_MICROBLOCKS_PER_SLOT, ctx->ticks_per_slot*(ctx->hashcnt_per_tick-1UL) );
971 0 : }
972 :
973 : /* Discard any ticks we might have done in the interim. They will
974 : have the wrong number of hashes per tick. We can just catch back
975 : up quickly if not too many slots were skipped and hopefully
976 : publish on time. Note that tick production and verification of
977 : skipped slots is done for the eventual bank that publishes a
978 : slot, for example:
979 :
980 : Reset Slot: 998
981 : Epoch Transition Slot: 1000
982 : Leader Slot: 1002
983 :
984 : In this case, if a feature changing the hashcnt_per_tick is
985 : activated in slot 1000, and we are publishing empty ticks for
986 : slots 998, 999, 1000, and 1001, they should all have the new
987 : hashes_per_tick number of hashes, rather than the older one, or
988 : some combination. */
989 :
990 0 : FD_TEST( ctx->last_slot==ctx->reset_slot );
991 0 : FD_TEST( !ctx->last_hashcnt );
992 0 : ctx->slot = ctx->reset_slot;
993 0 : ctx->hashcnt = 0UL;
994 0 : }
995 :
996 0 : ctx->current_leader_bank = bank;
997 0 : ctx->microblocks_lower_bound = 0UL;
998 0 : ctx->cus_used = 0UL;
999 0 : ctx->expect_microblock_idx = 0UL;
1000 :
1001 : /* We are about to start publishing to the shred tile for this slot
1002 : so update the highwater mark so we never republish in this slot
1003 : again. Also check that the leader slot is greater than the
1004 : highwater, which should have been ensured earlier. */
1005 :
1006 0 : FD_TEST( ctx->highwater_leader_slot==ULONG_MAX || slot>=ctx->highwater_leader_slot );
1007 0 : ctx->highwater_leader_slot = fd_ulong_max( fd_ulong_if( ctx->highwater_leader_slot==ULONG_MAX, 0UL, ctx->highwater_leader_slot ), slot );
1008 :
1009 0 : publish_became_leader( ctx, slot );
1010 0 : FD_LOG_INFO(( "fd_ext_poh_begin_leader(slot=%lu, highwater_leader_slot=%lu, last_slot=%lu, last_hashcnt=%lu)", slot, ctx->highwater_leader_slot, ctx->last_slot, ctx->last_hashcnt ));
1011 :
1012 0 : fd_ext_poh_write_unlock();
1013 0 : }
1014 :
1015 : /* Determine what the next slot is in the leader schedule is that we are
1016 : leader. Includes the current slot. If we are not leader in what
1017 : remains of the current and next epoch, return ULONG_MAX. */
1018 :
1019 : static inline CALLED_FROM_RUST ulong
1020 0 : next_leader_slot( fd_poh_ctx_t * ctx ) {
1021 : /* If we have published anything in a particular slot, then we
1022 : should never become leader for that slot again. */
1023 0 : ulong min_leader_slot = fd_ulong_max( ctx->slot, fd_ulong_if( ctx->highwater_leader_slot==ULONG_MAX, 0UL, ctx->highwater_leader_slot ) );
1024 :
1025 0 : for(;;) {
1026 0 : fd_epoch_leaders_t * leaders = fd_stake_ci_get_lsched_for_slot( ctx->stake_ci, min_leader_slot ); /* Safe to call from Rust */
1027 0 : if( FD_UNLIKELY( !leaders ) ) break;
1028 :
1029 0 : while( min_leader_slot<(leaders->slot0+leaders->slot_cnt) ) {
1030 0 : fd_pubkey_t const * leader = fd_epoch_leaders_get( leaders, min_leader_slot ); /* Safe to call from Rust */
1031 0 : if( FD_UNLIKELY( !memcmp( leader->key, ctx->identity_key.key, 32UL ) ) ) return min_leader_slot;
1032 0 : min_leader_slot++;
1033 0 : }
1034 0 : }
1035 :
1036 0 : return ULONG_MAX;
1037 0 : }
1038 :
1039 : static CALLED_FROM_RUST void
1040 0 : no_longer_leader( fd_poh_ctx_t * ctx ) {
1041 0 : if( FD_UNLIKELY( ctx->current_leader_bank ) ) fd_ext_bank_release( ctx->current_leader_bank );
1042 : /* If we stop being leader in a slot, we can never become leader in
1043 : that slot again, and all in-flight microblocks for that slot
1044 : should be dropped. */
1045 0 : ctx->highwater_leader_slot = fd_ulong_max( fd_ulong_if( ctx->highwater_leader_slot==ULONG_MAX, 0UL, ctx->highwater_leader_slot ), ctx->slot );
1046 0 : ctx->current_leader_bank = NULL;
1047 0 : ctx->next_leader_slot = next_leader_slot( ctx );
1048 :
1049 0 : FD_COMPILER_MFENCE();
1050 0 : fd_ext_poh_signal_leader_change( ctx->signal_leader_change );
1051 0 : FD_LOG_INFO(( "no_longer_leader(next_leader_slot=%lu)", ctx->next_leader_slot ));
1052 0 : }
1053 :
1054 : /* fd_ext_poh_reset is called by the Agave client when a slot on
1055 : the active fork has finished a block and we need to reset our PoH to
1056 : be ticking on top of the block it produced. */
1057 :
1058 : CALLED_FROM_RUST void
1059 : fd_ext_poh_reset( ulong completed_bank_slot, /* The slot that successfully produced a block */
1060 : uchar const * reset_blockhash, /* The hash of the last tick in the produced block */
1061 0 : ulong hashcnt_per_tick /* The hashcnt per tick of the bank that completed */ ) {
1062 0 : fd_poh_ctx_t * ctx = fd_ext_poh_write_lock();
1063 :
1064 0 : ulong slot_before_reset = ctx->slot;
1065 0 : int leader_before_reset = ctx->slot>=ctx->next_leader_slot;
1066 0 : if( FD_UNLIKELY( leader_before_reset && ctx->current_leader_bank ) ) {
1067 : /* If we were in the middle of a leader slot that we notified pack
1068 : pack to start packing for we can never publish into that slot
1069 : again, mark all in-flight microblocks to be dropped. */
1070 0 : ctx->highwater_leader_slot = fd_ulong_max( fd_ulong_if( ctx->highwater_leader_slot==ULONG_MAX, 0UL, ctx->highwater_leader_slot ), 1UL+ctx->slot );
1071 0 : }
1072 :
1073 0 : ctx->leader_bank_start_ns = fd_log_wallclock(); /* safe to call from Rust */
1074 0 : if( FD_UNLIKELY( ctx->expect_sequential_leader_slot==(completed_bank_slot+1UL) ) ) {
1075 : /* If we are being reset onto a slot, it means some block was fully
1076 : processed, so we reset to build on top of it. Typically we want
1077 : to update the reset_slot_start_ns to the current time, because
1078 : the network will give the next leader 400ms to publish,
1079 : regardless of how long the prior leader took.
1080 :
1081 : But: if we were leader in the prior slot, and the block was our
1082 : own we can do better. We know that the next slot should start
1083 : exactly 400ms after the prior one started, so we can use that as
1084 : the reset slot start time instead. */
1085 0 : ctx->reset_slot_start_ns = ctx->reset_slot_start_ns + (long)((double)((completed_bank_slot+1UL)-ctx->reset_slot)*ctx->slot_duration_ns);
1086 0 : } else {
1087 0 : ctx->reset_slot_start_ns = ctx->leader_bank_start_ns;
1088 0 : }
1089 0 : ctx->expect_sequential_leader_slot = ULONG_MAX;
1090 :
1091 0 : memcpy( ctx->hash, reset_blockhash, 32UL );
1092 0 : ctx->slot = completed_bank_slot+1UL;
1093 0 : ctx->hashcnt = 0UL;
1094 0 : ctx->last_slot = ctx->slot;
1095 0 : ctx->last_hashcnt = 0UL;
1096 0 : ctx->reset_slot = ctx->slot;
1097 :
1098 0 : if( FD_UNLIKELY( ctx->hashcnt_per_tick!=hashcnt_per_tick ) ) {
1099 0 : FD_LOG_WARNING(( "hashes per tick changed from %lu to %lu", ctx->hashcnt_per_tick, hashcnt_per_tick ));
1100 :
1101 : /* Recompute derived information about the clock. */
1102 0 : ctx->hashcnt_duration_ns = (double)ctx->tick_duration_ns/(double)hashcnt_per_tick;
1103 0 : ctx->hashcnt_per_slot = ctx->ticks_per_slot*hashcnt_per_tick;
1104 0 : ctx->hashcnt_per_tick = hashcnt_per_tick;
1105 :
1106 0 : if( FD_UNLIKELY( ctx->hashcnt_per_tick==1UL ) ) {
1107 : /* Low power producer, maximum of one microblock per tick in the slot */
1108 0 : ctx->max_microblocks_per_slot = ctx->ticks_per_slot;
1109 0 : } else {
1110 : /* See the long comment in after_credit for this limit */
1111 0 : ctx->max_microblocks_per_slot = fd_ulong_min( MAX_MICROBLOCKS_PER_SLOT, ctx->ticks_per_slot*(ctx->hashcnt_per_tick-1UL) );
1112 0 : }
1113 0 : }
1114 :
1115 : /* When we reset, we need to allow PoH to tick freely again rather
1116 : than being constrained. If we are leader after the reset, this
1117 : is OK because we won't tick until we get a bank, and the lower
1118 : bound will be reset with the value from the bank. */
1119 0 : ctx->microblocks_lower_bound = ctx->max_microblocks_per_slot;
1120 :
1121 0 : if( FD_UNLIKELY( leader_before_reset ) ) {
1122 : /* No longer have a leader bank if we are reset. Replay stage will
1123 : call back again to give us a new one if we should become leader
1124 : for the reset slot.
1125 :
1126 : The order is important here, ctx->hashcnt must be updated before
1127 : calling no_longer_leader. */
1128 0 : no_longer_leader( ctx );
1129 0 : }
1130 0 : ctx->next_leader_slot = next_leader_slot( ctx );
1131 0 : FD_LOG_INFO(( "fd_ext_poh_reset(slot=%lu,next_leader_slot=%lu)", ctx->reset_slot, ctx->next_leader_slot ));
1132 :
1133 0 : if( FD_UNLIKELY( ctx->slot>=ctx->next_leader_slot ) ) {
1134 : /* We are leader after the reset... two cases: */
1135 0 : if( FD_LIKELY( ctx->slot==slot_before_reset ) ) {
1136 : /* 1. We are reset onto the same slot we are already leader on.
1137 : This is a common case when we have two leader slots in a
1138 : row, replay stage will reset us to our own slot. No need to
1139 : do anything here, we already sent a SLOT_START. */
1140 0 : FD_TEST( leader_before_reset );
1141 0 : } else {
1142 : /* 2. We are reset onto a different slot. If we were leader
1143 : before, we should first end that slot, then begin the new
1144 : one if we are newly leader now. */
1145 0 : if( FD_LIKELY( leader_before_reset ) ) publish_plugin_slot_end( ctx, slot_before_reset, ctx->cus_used );
1146 0 : else publish_plugin_slot_start( ctx, ctx->next_leader_slot, ctx->reset_slot );
1147 0 : }
1148 0 : } else {
1149 0 : if( FD_UNLIKELY( leader_before_reset ) ) publish_plugin_slot_end( ctx, slot_before_reset, ctx->cus_used );
1150 0 : }
1151 :
1152 0 : fd_ext_poh_write_unlock();
1153 0 : }
1154 :
1155 : /* Since it can't easily return an Option<Pubkey>, return 1 for Some and
1156 : 0 for None. */
1157 : CALLED_FROM_RUST int
1158 : fd_ext_poh_get_leader_after_n_slots( ulong n,
1159 0 : uchar out_pubkey[ static 32 ] ) {
1160 0 : fd_poh_ctx_t * ctx = fd_ext_poh_write_lock();
1161 0 : ulong slot = ctx->slot + n;
1162 0 : fd_epoch_leaders_t * leaders = fd_stake_ci_get_lsched_for_slot( ctx->stake_ci, slot ); /* Safe to call from Rust */
1163 :
1164 0 : int copied = 0;
1165 0 : if( FD_LIKELY( leaders ) ) {
1166 0 : fd_pubkey_t const * leader = fd_epoch_leaders_get( leaders, slot ); /* Safe to call from Rust */
1167 0 : if( FD_LIKELY( leader ) ) {
1168 0 : memcpy( out_pubkey, leader, 32UL );
1169 0 : copied = 1;
1170 0 : }
1171 0 : }
1172 0 : fd_ext_poh_write_unlock();
1173 0 : return copied;
1174 0 : }
1175 :
1176 : FD_FN_CONST static inline ulong
1177 3 : scratch_align( void ) {
1178 3 : return 128UL;
1179 3 : }
1180 :
1181 : FD_FN_PURE static inline ulong
1182 3 : scratch_footprint( fd_topo_tile_t const * tile ) {
1183 3 : (void)tile;
1184 3 : ulong l = FD_LAYOUT_INIT;
1185 3 : l = FD_LAYOUT_APPEND( l, alignof( fd_poh_ctx_t ), sizeof( fd_poh_ctx_t ) );
1186 3 : l = FD_LAYOUT_APPEND( l, fd_stake_ci_align(), fd_stake_ci_footprint() );
1187 3 : l = FD_LAYOUT_APPEND( l, FD_SHA256_ALIGN, FD_SHA256_FOOTPRINT );
1188 3 : return FD_LAYOUT_FINI( l, scratch_align() );
1189 3 : }
1190 :
1191 : static void
1192 : publish_tick( fd_poh_ctx_t * ctx,
1193 : fd_stem_context_t * stem,
1194 : uchar hash[ static 32 ],
1195 0 : int is_skipped ) {
1196 0 : ulong hashcnt = ctx->hashcnt_per_tick*(1UL+(ctx->last_hashcnt/ctx->hashcnt_per_tick));
1197 :
1198 0 : uchar * dst = (uchar *)fd_chunk_to_laddr( ctx->shred_out->mem, ctx->shred_out->chunk );
1199 :
1200 0 : FD_TEST( ctx->last_slot>=ctx->reset_slot );
1201 0 : fd_entry_batch_meta_t * meta = (fd_entry_batch_meta_t *)dst;
1202 0 : if( FD_UNLIKELY( is_skipped ) ) {
1203 : /* We are publishing ticks for a skipped slot, the reference tick
1204 : and block complete flags should always be zero. */
1205 0 : meta->reference_tick = 0UL;
1206 0 : meta->block_complete = 0;
1207 0 : } else {
1208 0 : meta->reference_tick = hashcnt/ctx->hashcnt_per_tick;
1209 0 : meta->block_complete = hashcnt==ctx->hashcnt_per_slot;
1210 0 : }
1211 :
1212 0 : ulong slot = fd_ulong_if( meta->block_complete, ctx->slot-1UL, ctx->slot );
1213 0 : meta->parent_offset = 1UL+slot-ctx->reset_slot;
1214 :
1215 0 : FD_TEST( hashcnt>ctx->last_hashcnt );
1216 0 : ulong hash_delta = hashcnt-ctx->last_hashcnt;
1217 :
1218 0 : dst += sizeof(fd_entry_batch_meta_t);
1219 0 : fd_entry_batch_header_t * tick = (fd_entry_batch_header_t *)dst;
1220 0 : tick->hashcnt_delta = hash_delta;
1221 0 : fd_memcpy( tick->hash, hash, 32UL );
1222 0 : tick->txn_cnt = 0UL;
1223 :
1224 0 : ulong tspub = (ulong)fd_frag_meta_ts_comp( fd_tickcount() );
1225 0 : ulong sz = sizeof(fd_entry_batch_meta_t)+sizeof(fd_entry_batch_header_t);
1226 0 : ulong sig = fd_disco_poh_sig( slot, POH_PKT_TYPE_MICROBLOCK, 0UL );
1227 0 : fd_stem_publish( stem, ctx->shred_out->idx, sig, ctx->shred_out->chunk, sz, 0UL, 0UL, tspub );
1228 0 : ctx->shred_out->chunk = fd_dcache_compact_next( ctx->shred_out->chunk, sz, ctx->shred_out->chunk0, ctx->shred_out->wmark );
1229 :
1230 0 : if( FD_UNLIKELY( hashcnt==ctx->hashcnt_per_slot ) ) {
1231 0 : ctx->last_slot++;
1232 0 : ctx->last_hashcnt = 0UL;
1233 0 : } else {
1234 0 : ctx->last_hashcnt = hashcnt;
1235 0 : }
1236 0 : }
1237 :
1238 : static inline void
1239 : after_credit( fd_poh_ctx_t * ctx,
1240 : fd_stem_context_t * stem,
1241 : int * opt_poll_in,
1242 0 : int * charge_busy ) {
1243 0 : ctx->stem = stem;
1244 :
1245 0 : FD_COMPILER_MFENCE();
1246 0 : if( FD_UNLIKELY( fd_poh_waiting_lock ) ) {
1247 0 : FD_VOLATILE( fd_poh_returned_lock ) = 1UL;
1248 0 : FD_COMPILER_MFENCE();
1249 0 : for(;;) {
1250 0 : if( FD_UNLIKELY( !FD_VOLATILE_CONST( fd_poh_returned_lock ) ) ) break;
1251 0 : FD_SPIN_PAUSE();
1252 0 : }
1253 0 : FD_COMPILER_MFENCE();
1254 0 : FD_VOLATILE( fd_poh_waiting_lock ) = 0UL;
1255 0 : *opt_poll_in = 0;
1256 0 : *charge_busy = 1;
1257 0 : return;
1258 0 : }
1259 0 : FD_COMPILER_MFENCE();
1260 :
1261 0 : int is_leader = ctx->next_leader_slot!=ULONG_MAX && ctx->slot>=ctx->next_leader_slot;
1262 0 : if( FD_UNLIKELY( is_leader && !ctx->current_leader_bank ) ) {
1263 : /* If we are the leader, but we didn't yet learn what the leader
1264 : bank object is from the replay stage, do not do any hashing.
1265 :
1266 : This is not ideal, but greatly simplifies the control flow. */
1267 0 : return;
1268 0 : }
1269 :
1270 : /* If we have skipped ticks pending because we skipped some slots to
1271 : become leader, register them now one at a time. */
1272 0 : if( FD_UNLIKELY( is_leader && ctx->last_slot<ctx->slot ) ) {
1273 0 : ulong publish_hashcnt = ctx->last_hashcnt+ctx->hashcnt_per_tick;
1274 0 : ulong tick_idx = (ctx->last_slot*ctx->ticks_per_slot+publish_hashcnt/ctx->hashcnt_per_tick)%MAX_SKIPPED_TICKS;
1275 :
1276 0 : fd_ext_poh_register_tick( ctx->current_leader_bank, ctx->skipped_tick_hashes[ tick_idx ] );
1277 0 : publish_tick( ctx, stem, ctx->skipped_tick_hashes[ tick_idx ], 1 );
1278 :
1279 : /* If we are catching up now and publishing a bunch of skipped
1280 : ticks, we do not want to process any incoming microblocks until
1281 : all the skipped ticks have been published out; otherwise we would
1282 : intersperse skipped tick messages with microblocks. */
1283 0 : *opt_poll_in = 0;
1284 0 : *charge_busy = 1;
1285 0 : return;
1286 0 : }
1287 :
1288 0 : int low_power_mode = ctx->hashcnt_per_tick==1UL;
1289 :
1290 : /* If we are the leader, always leave enough capacity in the slot so
1291 : that we can mixin any potential microblocks still coming from the
1292 : pack tile for this slot. */
1293 0 : ulong max_remaining_microblocks = ctx->max_microblocks_per_slot - ctx->microblocks_lower_bound;
1294 : /* With hashcnt_per_tick hashes per tick, we actually get
1295 : hashcnt_per_tick-1 chances to mixin a microblock. For each tick
1296 : span that we need to reserve, we also need to reserve the hashcnt
1297 : for the tick, hence the +
1298 : max_remaining_microblocks/(hashcnt_per_tick-1) rounded up.
1299 :
1300 : However, if hashcnt_per_tick is 1 because we're in low power mode,
1301 : this should probably just be max_remaining_microblocks. */
1302 0 : ulong max_remaining_ticks_or_microblocks = max_remaining_microblocks;
1303 0 : if( FD_LIKELY( !low_power_mode ) ) max_remaining_ticks_or_microblocks += (max_remaining_microblocks+ctx->hashcnt_per_tick-2UL)/(ctx->hashcnt_per_tick-1UL);
1304 :
1305 0 : ulong restricted_hashcnt = fd_ulong_if( ctx->hashcnt_per_slot>=max_remaining_ticks_or_microblocks, ctx->hashcnt_per_slot-max_remaining_ticks_or_microblocks, 0UL );
1306 :
1307 0 : ulong min_hashcnt = ctx->hashcnt;
1308 :
1309 0 : if( FD_LIKELY( !low_power_mode ) ) {
1310 : /* Recall that there are two kinds of events that will get published
1311 : to the shredder,
1312 :
1313 : (a) Ticks. These occur every 62,500 (hashcnt_per_tick) hashcnts,
1314 : and there will be 64 (ticks_per_slot) of them in each slot.
1315 :
1316 : Ticks must not have any transactions mixed into the hash.
1317 : This is not strictly needed in theory, but is required by the
1318 : current consensus protocol. They get published here in
1319 : after_credit.
1320 :
1321 : (b) Microblocks. These can occur at any other hashcnt, as long
1322 : as it is not a tick. Microblocks cannot be empty, and must
1323 : have at least one transactions mixed in. These get
1324 : published in after_frag.
1325 :
1326 : If hashcnt_per_tick is 1, then we are in low power mode and the
1327 : following does not apply, since we can mix in transactions at any
1328 : time.
1329 :
1330 : In the normal, non-low-power mode, though, we have to be careful
1331 : to make sure that we do not publish microblocks on tick
1332 : boundaries. To do that, we need to obey two rules:
1333 : (i) after_credit must not leave hashcnt one before a tick
1334 : boundary
1335 : (ii) if after_credit begins one before a tick boundary, it must
1336 : advance hashcnt and publish the tick
1337 :
1338 : There's some interplay between min_hashcnt and restricted_hashcnt
1339 : here, and we need to show that there's always a value of
1340 : target_hashcnt we can pick such that
1341 : min_hashcnt <= target_hashcnt <= restricted_hashcnt.
1342 : We'll prove this by induction for current_slot==0 and
1343 : is_leader==true, since all other slots should be the same.
1344 :
1345 : Let m_j and r_j be the min_hashcnt and restricted_hashcnt
1346 : (respectively) for the jth call to after_credit in a slot. We
1347 : want to show that for all values of j, it's possible to pick a
1348 : value h_j, the value of target_hashcnt for the jth call to
1349 : after_credit (which is also the value of hashcnt after
1350 : after_credit has completed) such that m_j<=h_j<=r_j.
1351 :
1352 : Additionally, let T be hashcnt_per_tick and N be ticks_per_slot.
1353 :
1354 : Starting with the base case, j==0. m_j=0, and
1355 : r_0 = N*T - max_microblocks_per_slot
1356 : - ceil(max_microblocks_per_slot/(T-1)).
1357 :
1358 : This is monotonic decreasing in max_microblocks_per_slot, so it
1359 : achieves its minimum when max_microblocks_per_slot is its
1360 : maximum.
1361 : r_0 >= N*T - N*(T-1) - ceil( (N*(T-1))/(T-1))
1362 : = N*T - N*(T-1)-N = 0.
1363 : Thus, m_0 <= r_0, as desired.
1364 :
1365 :
1366 :
1367 : Then, for the inductive step, assume there exists h_j such that
1368 : m_j<=h_j<=r_j, and we want to show that there exists h_{j+1},
1369 : which is the same as showing m_{j+1}<=r_{j+1}.
1370 :
1371 : Let a_j be 1 if we had a microblock immediately following the jth
1372 : call to after_credit, and 0 otherwise. Then hashcnt at the start
1373 : of the (j+1)th call to after_frag is h_j+a_j.
1374 : Also, set b_{j+1}=1 if we are in the case covered by rule (ii)
1375 : above during the (j+1)th call to after_credit, i.e. if
1376 : (h_j+a_j)%T==T-1. Thus, m_{j+1} = h_j + a_j + b_{j+1}.
1377 :
1378 : If we received an additional microblock, then
1379 : max_remaining_microblocks goes down by 1, and
1380 : max_remaining_ticks_or_microblocks goes down by either 1 or 2,
1381 : which means restricted_hashcnt goes up by either 1 or 2. In
1382 : particular, it goes up by 2 if the new value of
1383 : max_remaining_microblocks (at the start of the (j+1)th call to
1384 : after_credit) is congruent to 0 mod T-1. Let b'_{j+1} be 1 if
1385 : this condition is met and 0 otherwise. If we receive a
1386 : done_packing message, restricted_hashcnt can go up by more, but
1387 : we can ignore that case, since it is less restrictive.
1388 : Thus, r_{j+1}=r_j+a_j+b'_{j+1}.
1389 :
1390 : If h_j < r_j (strictly less), then h_j+a_j < r_j+a_j. And thus,
1391 : since b_{j+1}<=b'_{j+1}+1, just by virtue of them both being
1392 : binary,
1393 : h_j + a_j + b_{j+1} < r_j + a_j + b'_{j+1} + 1,
1394 : which is the same (for integers) as
1395 : h_j + a_j + b_{j+1} <= r_j + a_j + b'_{j+1},
1396 : m_{j+1} <= r_{j+1}
1397 :
1398 : On the other hand, if h_j==r_j, this is easy unless b_{j+1}==1,
1399 : which can also only happen if a_j==1. Then (h_j+a_j)%T==T-1,
1400 : which means there's an integer k such that
1401 :
1402 : h_j+a_j==(ticks_per_slot-k)*T-1
1403 : h_j ==ticks_per_slot*T - k*(T-1)-1 - k-1
1404 : ==ticks_per_slot*T - (k*(T-1)+1) - ceil( (k*(T-1)+1)/(T-1) )
1405 :
1406 : Since h_j==r_j in this case, and
1407 : r_j==(ticks_per_slot*T) - max_remaining_microblocks_j - ceil(max_remaining_microblocks_j/(T-1)),
1408 : we can see that the value of max_remaining_microblocks at the
1409 : start of the jth call to after_credit is k*(T-1)+1. Again, since
1410 : a_j==1, then the value of max_remaining_microblocks at the start
1411 : of the j+1th call to after_credit decreases by 1 to k*(T-1),
1412 : which means b'_{j+1}=1.
1413 :
1414 : Thus, h_j + a_j + b_{j+1} == r_j + a_j + b'_{j+1}, so, in
1415 : particular, h_{j+1}<=r_{j+1} as desired. */
1416 0 : min_hashcnt += (ulong)(min_hashcnt%ctx->hashcnt_per_tick == (ctx->hashcnt_per_tick-1UL)); /* add b_{j+1}, enforcing rule (ii) */
1417 0 : }
1418 : /* Now figure out how many hashes are needed to "catch up" the hash
1419 : count to the current system clock, and clamp it to the allowed
1420 : range. */
1421 0 : long now = fd_log_wallclock();
1422 0 : ulong target_hashcnt;
1423 0 : if( FD_LIKELY( !is_leader ) ) {
1424 0 : target_hashcnt = (ulong)((double)(now - ctx->reset_slot_start_ns) / ctx->hashcnt_duration_ns) - (ctx->slot-ctx->reset_slot)*ctx->hashcnt_per_slot;
1425 0 : } else {
1426 : /* We might have gotten very behind on hashes, but if we are leader
1427 : we want to catch up gradually over the remainder of our leader
1428 : slot, not all at once right now. This helps keep the tile from
1429 : being oversubscribed and taking a long time to process incoming
1430 : microblocks. */
1431 0 : long expected_slot_start_ns = ctx->reset_slot_start_ns + (long)((double)(ctx->slot-ctx->reset_slot)*ctx->slot_duration_ns);
1432 0 : double actual_slot_duration_ns = ctx->slot_duration_ns<(double)(ctx->leader_bank_start_ns - expected_slot_start_ns) ? 0.0 : ctx->slot_duration_ns - (double)(ctx->leader_bank_start_ns - expected_slot_start_ns);
1433 0 : double actual_hashcnt_duration_ns = actual_slot_duration_ns / (double)ctx->hashcnt_per_slot;
1434 0 : target_hashcnt = fd_ulong_if( actual_hashcnt_duration_ns==0.0, restricted_hashcnt, (ulong)((double)(now - ctx->leader_bank_start_ns) / actual_hashcnt_duration_ns) );
1435 0 : }
1436 : /* Clamp to [min_hashcnt, restricted_hashcnt] as above */
1437 0 : target_hashcnt = fd_ulong_max( fd_ulong_min( target_hashcnt, restricted_hashcnt ), min_hashcnt );
1438 :
1439 : /* The above proof showed that it was always possible to pick a value
1440 : of target_hashcnt, but we still have a lot of freedom in how to
1441 : pick it. It simplifies the code a lot if we don't keep going after
1442 : a tick in this function. In particular, we want to publish at most
1443 : 1 tick in this call, since otherwise we could consume infinite
1444 : credits to publish here. The credits are set so that we should
1445 : only ever publish one tick during this loop. Also, all the extra
1446 : stuff (leader transitions, publishing ticks, etc.) we have to do
1447 : happens at tick boundaries, so this lets us consolidate all those
1448 : cases.
1449 :
1450 : Mathematically, since the current value of hashcnt is h_j+a_j, the
1451 : next tick (advancing a full tick if we're currently at a tick) is
1452 : t_{j+1} = T*(floor( (h_j+a_j)/T )+1). We need to show that if we set
1453 : h'_{j+1} = min( h_{j+1}, t_{j+1} ), it is still valid.
1454 :
1455 : First, h'_{j+1} <= h_{j+1} <= r_{j+1}, so we're okay in that
1456 : direction.
1457 :
1458 : Next, observe that t_{j+1}>=h_j + a_j + 1, and recall that b_{j+1}
1459 : is 0 or 1. So then,
1460 : t_{j+1} >= h_j+a_j+b_{j+1} = m_{j+1}.
1461 :
1462 : We know h_{j+1) >= m_{j+1} from before, so then h'_{j+1} >=
1463 : m_{j+1}, as desired. */
1464 :
1465 0 : ulong next_tick_hashcnt = ctx->hashcnt_per_tick * (1UL+(ctx->hashcnt/ctx->hashcnt_per_tick));
1466 0 : target_hashcnt = fd_ulong_min( target_hashcnt, next_tick_hashcnt );
1467 :
1468 : /* We still need to enforce rule (i). We know that min_hashcnt%T !=
1469 : T-1 because of rule (ii). That means that if target_hashcnt%T ==
1470 : T-1 at this point, target_hashcnt > min_hashcnt (notice the
1471 : strict), so target_hashcnt-1 >= min_hashcnt and is thus still a
1472 : valid choice for target_hashcnt. */
1473 0 : target_hashcnt -= (ulong)( (!low_power_mode) & ((target_hashcnt%ctx->hashcnt_per_tick)==(ctx->hashcnt_per_tick-1UL)) );
1474 :
1475 0 : FD_TEST( target_hashcnt >= ctx->hashcnt );
1476 0 : FD_TEST( target_hashcnt >= min_hashcnt );
1477 0 : FD_TEST( target_hashcnt <= restricted_hashcnt );
1478 :
1479 0 : if( FD_UNLIKELY( ctx->hashcnt==target_hashcnt ) ) return; /* Nothing to do, don't publish a tick twice */
1480 :
1481 0 : *charge_busy = 1;
1482 :
1483 0 : while( ctx->hashcnt<target_hashcnt ) {
1484 0 : fd_sha256_hash( ctx->hash, 32UL, ctx->hash );
1485 0 : ctx->hashcnt++;
1486 0 : }
1487 :
1488 0 : if( FD_UNLIKELY( ctx->hashcnt==ctx->hashcnt_per_slot ) ) {
1489 0 : ctx->slot++;
1490 0 : ctx->hashcnt = 0UL;
1491 0 : }
1492 :
1493 0 : if( FD_UNLIKELY( !is_leader && !(ctx->hashcnt%ctx->hashcnt_per_tick ) ) ) {
1494 : /* We finished a tick while not leader... save the current hash so
1495 : it can be played back into the bank when we become the leader. */
1496 0 : ulong tick_idx = (ctx->slot*ctx->ticks_per_slot+ctx->hashcnt/ctx->hashcnt_per_tick)%MAX_SKIPPED_TICKS;
1497 0 : fd_memcpy( ctx->skipped_tick_hashes[ tick_idx ], ctx->hash, 32UL );
1498 :
1499 0 : ulong initial_tick_idx = (ctx->last_slot*ctx->ticks_per_slot+ctx->last_hashcnt/ctx->hashcnt_per_tick)%MAX_SKIPPED_TICKS;
1500 0 : if( FD_UNLIKELY( tick_idx==initial_tick_idx ) ) FD_LOG_ERR(( "Too many skipped ticks from slot %lu to slot %lu, chain must halt", ctx->last_slot, ctx->slot ));
1501 0 : }
1502 :
1503 0 : if( FD_UNLIKELY( is_leader && !(ctx->hashcnt%ctx->hashcnt_per_tick) ) ) {
1504 : /* We ticked while leader... tell the leader bank. */
1505 0 : fd_ext_poh_register_tick( ctx->current_leader_bank, ctx->hash );
1506 :
1507 : /* And send an empty microblock (a tick) to the shred tile. */
1508 0 : publish_tick( ctx, stem, ctx->hash, 0 );
1509 0 : }
1510 :
1511 0 : if( FD_UNLIKELY( !is_leader && ctx->slot>=ctx->next_leader_slot ) ) {
1512 : /* We ticked while not leader and are now leader... transition
1513 : the state machine. */
1514 0 : publish_plugin_slot_start( ctx, ctx->next_leader_slot, ctx->reset_slot );
1515 0 : FD_LOG_INFO(( "fd_poh_ticked_into_leader(slot=%lu, reset_slot=%lu)", ctx->next_leader_slot, ctx->reset_slot ));
1516 0 : }
1517 :
1518 0 : if( FD_UNLIKELY( is_leader && ctx->slot>ctx->next_leader_slot ) ) {
1519 : /* We ticked while leader and are no longer leader... transition
1520 : the state machine. */
1521 0 : FD_TEST( !max_remaining_microblocks );
1522 0 : publish_plugin_slot_end( ctx, ctx->next_leader_slot, ctx->cus_used );
1523 0 : FD_LOG_INFO(( "fd_poh_ticked_outof_leader(slot=%lu)", ctx->next_leader_slot ));
1524 :
1525 0 : no_longer_leader( ctx );
1526 0 : ctx->expect_sequential_leader_slot = ctx->slot;
1527 :
1528 0 : double tick_per_ns = fd_tempo_tick_per_ns( NULL );
1529 0 : fd_histf_sample( ctx->slot_done_delay, (ulong)((double)(fd_log_wallclock()-ctx->reset_slot_start_ns)/tick_per_ns) );
1530 0 : ctx->next_leader_slot = next_leader_slot( ctx );
1531 :
1532 0 : if( FD_UNLIKELY( ctx->slot>=ctx->next_leader_slot ) ) {
1533 : /* We finished a leader slot, and are immediately leader for the
1534 : following slot... transition. */
1535 0 : publish_plugin_slot_start( ctx, ctx->next_leader_slot, ctx->next_leader_slot-1UL );
1536 0 : FD_LOG_INFO(( "fd_poh_ticked_into_leader(slot=%lu, reset_slot=%lu)", ctx->next_leader_slot, ctx->next_leader_slot-1UL ));
1537 0 : }
1538 0 : }
1539 0 : }
1540 :
1541 : static inline void
1542 0 : metrics_write( fd_poh_ctx_t * ctx ) {
1543 0 : FD_MHIST_COPY( POH, BEGIN_LEADER_DELAY_SECONDS, ctx->begin_leader_delay );
1544 0 : FD_MHIST_COPY( POH, FIRST_MICROBLOCK_DELAY_SECONDS, ctx->first_microblock_delay );
1545 0 : FD_MHIST_COPY( POH, SLOT_DONE_DELAY_SECONDS, ctx->slot_done_delay );
1546 0 : }
1547 :
1548 : static int
1549 : before_frag( fd_poh_ctx_t * ctx,
1550 : ulong in_idx,
1551 : ulong seq,
1552 0 : ulong sig ) {
1553 0 : (void)in_idx;
1554 0 : (void)seq;
1555 :
1556 0 : if( FD_LIKELY( ctx->in_kind[ in_idx ]==IN_KIND_BANK ) ) {
1557 0 : ulong microblock_idx = fd_disco_bank_sig_microblock_idx( sig );
1558 0 : FD_TEST( microblock_idx>=ctx->expect_microblock_idx );
1559 :
1560 : /* Return the fragment to stem so we can process it later, if it's
1561 : not next in the sequence. */
1562 0 : if( FD_UNLIKELY( microblock_idx>ctx->expect_microblock_idx ) ) return -1;
1563 :
1564 0 : ctx->expect_microblock_idx++;
1565 0 : }
1566 :
1567 0 : return 0;
1568 0 : }
1569 :
1570 : static inline void
1571 : during_frag( fd_poh_ctx_t * ctx,
1572 : ulong in_idx,
1573 : ulong seq,
1574 : ulong sig,
1575 : ulong chunk,
1576 0 : ulong sz ) {
1577 0 : (void)seq;
1578 0 : (void)sig;
1579 :
1580 0 : ctx->skip_frag = 0;
1581 :
1582 0 : if( FD_UNLIKELY( ctx->in_kind[ in_idx ]==IN_KIND_STAKE ) ) {
1583 0 : if( FD_UNLIKELY( chunk<ctx->in[ in_idx ].chunk0 || chunk>ctx->in[ in_idx ].wmark ) )
1584 0 : FD_LOG_ERR(( "chunk %lu %lu corrupt, not in range [%lu,%lu]", chunk, sz,
1585 0 : ctx->in[ in_idx ].chunk0, ctx->in[ in_idx ].wmark ));
1586 :
1587 0 : uchar const * dcache_entry = fd_chunk_to_laddr_const( ctx->in[ in_idx ].mem, chunk );
1588 0 : fd_stake_ci_stake_msg_init( ctx->stake_ci, dcache_entry );
1589 0 : return;
1590 0 : }
1591 :
1592 0 : ulong pkt_type;
1593 0 : ulong slot;
1594 0 : switch( ctx->in_kind[ in_idx ] ) {
1595 0 : case IN_KIND_BANK: {
1596 0 : pkt_type = POH_PKT_TYPE_MICROBLOCK;
1597 0 : slot = fd_disco_bank_sig_slot( sig );
1598 0 : break;
1599 0 : }
1600 0 : case IN_KIND_PACK: {
1601 0 : pkt_type = fd_disco_poh_sig_pkt_type( sig );
1602 0 : slot = fd_disco_poh_sig_slot( sig );
1603 0 : break;
1604 0 : }
1605 0 : default:
1606 0 : FD_LOG_ERR(( "unexpected in_kind %d", ctx->in_kind[ in_idx ] ));
1607 0 : }
1608 :
1609 0 : int is_frag_for_prior_leader_slot = 0;
1610 0 : if( FD_LIKELY( pkt_type==POH_PKT_TYPE_DONE_PACKING || pkt_type==POH_PKT_TYPE_MICROBLOCK ) ) {
1611 : /* The following sequence is possible...
1612 :
1613 : 1. We become leader in slot 10
1614 : 2. While leader, we switch to a fork that is on slot 8, where
1615 : we are leader
1616 : 3. We get the in-flight microblocks for slot 10
1617 :
1618 : These in-flight microblocks need to be dropped, so we check
1619 : against the high water mark (highwater_leader_slot) rather than
1620 : the current hashcnt here when determining what to drop.
1621 :
1622 : We know if the slot is lower than the high water mark it's from a stale
1623 : leader slot, because we will not become leader for the same slot twice
1624 : even if we are reset back in time (to prevent duplicate blocks). */
1625 0 : is_frag_for_prior_leader_slot = slot<ctx->highwater_leader_slot;
1626 0 : }
1627 :
1628 0 : if( FD_UNLIKELY( ctx->in_kind[ in_idx ]==IN_KIND_PACK ) ) {
1629 : /* We now know the real amount of microblocks published, so set an
1630 : exact bound for once we receive them. */
1631 0 : ctx->skip_frag = 1;
1632 0 : if( pkt_type==POH_PKT_TYPE_DONE_PACKING ) {
1633 0 : if( FD_UNLIKELY( is_frag_for_prior_leader_slot ) ) return;
1634 :
1635 0 : FD_TEST( ctx->microblocks_lower_bound<=ctx->max_microblocks_per_slot );
1636 0 : fd_done_packing_t const * done_packing = fd_chunk_to_laddr( ctx->in[ in_idx ].mem, chunk );
1637 0 : FD_LOG_INFO(( "done_packing(slot=%lu,seen_microblocks=%lu,microblocks_in_slot=%lu)",
1638 0 : ctx->slot,
1639 0 : ctx->microblocks_lower_bound,
1640 0 : done_packing->microblocks_in_slot ));
1641 0 : ctx->microblocks_lower_bound += ctx->max_microblocks_per_slot - done_packing->microblocks_in_slot;
1642 0 : }
1643 0 : return;
1644 0 : } else {
1645 0 : if( FD_UNLIKELY( chunk<ctx->in[ in_idx ].chunk0 || chunk>ctx->in[ in_idx ].wmark || sz>USHORT_MAX ) )
1646 0 : FD_LOG_ERR(( "chunk %lu %lu corrupt, not in range [%lu,%lu]", chunk, sz, ctx->in[ in_idx ].chunk0, ctx->in[ in_idx ].wmark ));
1647 :
1648 0 : uchar * src = (uchar *)fd_chunk_to_laddr( ctx->in[ in_idx ].mem, chunk );
1649 :
1650 0 : fd_memcpy( ctx->_txns, src, sz-sizeof(fd_microblock_trailer_t) );
1651 0 : fd_memcpy( ctx->_microblock_trailer, src+sz-sizeof(fd_microblock_trailer_t), sizeof(fd_microblock_trailer_t) );
1652 :
1653 0 : ctx->skip_frag = is_frag_for_prior_leader_slot;
1654 0 : }
1655 0 : }
1656 :
1657 : static void
1658 : publish_microblock( fd_poh_ctx_t * ctx,
1659 : fd_stem_context_t * stem,
1660 : ulong slot,
1661 : ulong hashcnt_delta,
1662 0 : ulong txn_cnt ) {
1663 0 : uchar * dst = (uchar *)fd_chunk_to_laddr( ctx->shred_out->mem, ctx->shred_out->chunk );
1664 0 : FD_TEST( slot>=ctx->reset_slot );
1665 0 : fd_entry_batch_meta_t * meta = (fd_entry_batch_meta_t *)dst;
1666 0 : meta->parent_offset = 1UL+slot-ctx->reset_slot;
1667 0 : meta->reference_tick = (ctx->hashcnt/ctx->hashcnt_per_tick) % ctx->ticks_per_slot;
1668 0 : meta->block_complete = !ctx->hashcnt;
1669 :
1670 0 : dst += sizeof(fd_entry_batch_meta_t);
1671 0 : fd_entry_batch_header_t * header = (fd_entry_batch_header_t *)dst;
1672 0 : header->hashcnt_delta = hashcnt_delta;
1673 0 : fd_memcpy( header->hash, ctx->hash, 32UL );
1674 :
1675 0 : dst += sizeof(fd_entry_batch_header_t);
1676 0 : ulong payload_sz = 0UL;
1677 0 : ulong included_txn_cnt = 0UL;
1678 0 : for( ulong i=0UL; i<txn_cnt; i++ ) {
1679 0 : fd_txn_p_t * txn = (fd_txn_p_t *)(ctx->_txns + i*sizeof(fd_txn_p_t));
1680 0 : if( FD_UNLIKELY( !(txn->flags & FD_TXN_P_FLAGS_EXECUTE_SUCCESS) ) ) continue;
1681 :
1682 0 : fd_memcpy( dst, txn->payload, txn->payload_sz );
1683 0 : payload_sz += txn->payload_sz;
1684 0 : dst += txn->payload_sz;
1685 0 : included_txn_cnt++;
1686 0 : }
1687 0 : header->txn_cnt = included_txn_cnt;
1688 :
1689 : /* We always have credits to publish here, because we have a burst
1690 : value of 3 credits, and at most we will publish_tick() once and
1691 : then publish_became_leader() once, leaving one credit here to
1692 : publish the microblock. */
1693 0 : ulong tspub = (ulong)fd_frag_meta_ts_comp( fd_tickcount() );
1694 0 : ulong sz = sizeof(fd_entry_batch_meta_t)+sizeof(fd_entry_batch_header_t)+payload_sz;
1695 0 : ulong new_sig = fd_disco_poh_sig( slot, POH_PKT_TYPE_MICROBLOCK, 0UL );
1696 0 : fd_stem_publish( stem, ctx->shred_out->idx, new_sig, ctx->shred_out->chunk, sz, 0UL, 0UL, tspub );
1697 0 : ctx->shred_out->chunk = fd_dcache_compact_next( ctx->shred_out->chunk, sz, ctx->shred_out->chunk0, ctx->shred_out->wmark );
1698 0 : }
1699 :
1700 : static inline void
1701 : after_frag( fd_poh_ctx_t * ctx,
1702 : ulong in_idx,
1703 : ulong seq,
1704 : ulong sig,
1705 : ulong sz,
1706 : ulong tsorig,
1707 0 : fd_stem_context_t * stem ) {
1708 0 : (void)in_idx;
1709 0 : (void)seq;
1710 0 : (void)tsorig;
1711 :
1712 0 : if( FD_UNLIKELY( ctx->skip_frag ) ) return;
1713 :
1714 0 : if( FD_UNLIKELY( ctx->in_kind[ in_idx ]==IN_KIND_STAKE ) ) {
1715 0 : fd_stake_ci_stake_msg_fini( ctx->stake_ci );
1716 : /* It might seem like we do not need to do state transitions in and
1717 : out of being the leader here, since leader schedule updates are
1718 : always one epoch in advance (whether we are leader or not would
1719 : never change for the currently executing slot) but this is not
1720 : true for new ledgers when the validator first boots. We will
1721 : likely be the leader in slot 1, and get notified of the leader
1722 : schedule for that slot while we are still in it.
1723 :
1724 : For safety we just handle both transitions, in and out, although
1725 : the only one possible should be into leader. */
1726 0 : ulong next_leader_slot_after_frag = next_leader_slot( ctx );
1727 :
1728 0 : int currently_leader = ctx->slot>=ctx->next_leader_slot;
1729 0 : int leader_after_frag = ctx->slot>=next_leader_slot_after_frag;
1730 :
1731 0 : FD_LOG_INFO(( "stake_update(before_leader=%lu,after_leader=%lu)",
1732 0 : ctx->next_leader_slot,
1733 0 : next_leader_slot_after_frag ));
1734 :
1735 0 : ctx->next_leader_slot = next_leader_slot_after_frag;
1736 0 : if( FD_UNLIKELY( currently_leader && !leader_after_frag ) ) {
1737 : /* Shouldn't ever happen, otherwise we need to do a state
1738 : transition out of being leader. */
1739 0 : FD_LOG_ERR(( "stake update caused us to no longer be leader in an active slot" ));
1740 0 : }
1741 :
1742 : /* Nothing to do if we transition into being leader, since it
1743 : will just get picked up by the regular tick loop. */
1744 0 : if( FD_UNLIKELY( !currently_leader && leader_after_frag ) ) {
1745 0 : publish_plugin_slot_start( ctx, next_leader_slot_after_frag, ctx->reset_slot );
1746 0 : }
1747 :
1748 0 : return;
1749 0 : }
1750 :
1751 0 : if( FD_UNLIKELY( !ctx->microblocks_lower_bound ) ) {
1752 0 : double tick_per_ns = fd_tempo_tick_per_ns( NULL );
1753 0 : fd_histf_sample( ctx->first_microblock_delay, (ulong)((double)(fd_log_wallclock()-ctx->reset_slot_start_ns)/tick_per_ns) );
1754 0 : }
1755 :
1756 0 : ulong target_slot = fd_disco_bank_sig_slot( sig );
1757 :
1758 0 : if( FD_UNLIKELY( target_slot!=ctx->next_leader_slot || target_slot!=ctx->slot ) ) {
1759 0 : FD_LOG_ERR(( "packed too early or late target_slot=%lu, current_slot=%lu. highwater_leader_slot=%lu",
1760 0 : target_slot, ctx->slot, ctx->highwater_leader_slot ));
1761 0 : }
1762 :
1763 0 : FD_TEST( ctx->current_leader_bank );
1764 0 : FD_TEST( ctx->microblocks_lower_bound<ctx->max_microblocks_per_slot );
1765 0 : ctx->microblocks_lower_bound += 1UL;
1766 :
1767 0 : ulong txn_cnt = (sz-sizeof(fd_microblock_trailer_t))/sizeof(fd_txn_p_t);
1768 0 : fd_txn_p_t * txns = (fd_txn_p_t *)(ctx->_txns);
1769 0 : ulong executed_txn_cnt = 0UL;
1770 0 : ulong cus_used = 0UL;
1771 0 : for( ulong i=0UL; i<txn_cnt; i++ ) {
1772 0 : if( FD_LIKELY( txns[ i ].flags & FD_TXN_P_FLAGS_EXECUTE_SUCCESS ) ) {
1773 0 : executed_txn_cnt++;
1774 0 : cus_used += txns[ i ].bank_cu.actual_consumed_cus;
1775 0 : }
1776 0 : }
1777 :
1778 : /* We don't publish transactions that fail to execute. If all the
1779 : transactions failed to execute, the microblock would be empty,
1780 : causing agave to think it's a tick and complain. Instead, we just
1781 : skip the microblock and don't hash or update the hashcnt. */
1782 0 : if( FD_UNLIKELY( !executed_txn_cnt ) ) return;
1783 :
1784 0 : uchar data[ 64 ];
1785 0 : fd_memcpy( data, ctx->hash, 32UL );
1786 0 : fd_memcpy( data+32UL, ctx->_microblock_trailer->hash, 32UL );
1787 0 : fd_sha256_hash( data, 64UL, ctx->hash );
1788 :
1789 0 : ctx->hashcnt++;
1790 0 : FD_TEST( ctx->hashcnt>ctx->last_hashcnt );
1791 0 : ulong hashcnt_delta = ctx->hashcnt - ctx->last_hashcnt;
1792 :
1793 : /* The hashing loop above will never leave us exactly one away from
1794 : crossing a tick boundary, so this increment will never cause the
1795 : current tick (or the slot) to change, except in low power mode
1796 : for development, in which case we do need to register the tick
1797 : with the leader bank. We don't need to publish the tick since
1798 : sending the microblock below is the publishing action. */
1799 0 : if( FD_UNLIKELY( !(ctx->hashcnt%ctx->hashcnt_per_slot ) ) ) {
1800 0 : ctx->slot++;
1801 0 : ctx->hashcnt = 0UL;
1802 0 : }
1803 :
1804 0 : ctx->last_slot = ctx->slot;
1805 0 : ctx->last_hashcnt = ctx->hashcnt;
1806 :
1807 0 : ctx->cus_used += cus_used;
1808 :
1809 0 : if( FD_UNLIKELY( !(ctx->hashcnt%ctx->hashcnt_per_tick ) ) ) {
1810 0 : fd_ext_poh_register_tick( ctx->current_leader_bank, ctx->hash );
1811 0 : if( FD_UNLIKELY( ctx->slot>ctx->next_leader_slot ) ) {
1812 : /* We ticked while leader and are no longer leader... transition
1813 : the state machine. */
1814 0 : publish_plugin_slot_end( ctx, ctx->next_leader_slot, ctx->cus_used );
1815 :
1816 0 : no_longer_leader( ctx );
1817 :
1818 0 : if( FD_UNLIKELY( ctx->slot>=ctx->next_leader_slot ) ) {
1819 : /* We finished a leader slot, and are immediately leader for the
1820 : following slot... transition. */
1821 0 : publish_plugin_slot_start( ctx, ctx->next_leader_slot, ctx->next_leader_slot-1UL );
1822 0 : }
1823 0 : }
1824 0 : }
1825 :
1826 0 : publish_microblock( ctx, stem, target_slot, hashcnt_delta, txn_cnt );
1827 0 : }
1828 :
1829 : static void
1830 : privileged_init( fd_topo_t * topo,
1831 0 : fd_topo_tile_t * tile ) {
1832 0 : void * scratch = fd_topo_obj_laddr( topo, tile->tile_obj_id );
1833 :
1834 0 : FD_SCRATCH_ALLOC_INIT( l, scratch );
1835 0 : fd_poh_ctx_t * ctx = FD_SCRATCH_ALLOC_APPEND( l, alignof( fd_poh_ctx_t ), sizeof( fd_poh_ctx_t ) );
1836 :
1837 0 : if( FD_UNLIKELY( !strcmp( tile->poh.identity_key_path, "" ) ) )
1838 0 : FD_LOG_ERR(( "identity_key_path not set" ));
1839 :
1840 0 : const uchar * identity_key = fd_keyload_load( tile->poh.identity_key_path, /* pubkey only: */ 1 );
1841 0 : fd_memcpy( ctx->identity_key.uc, identity_key, 32UL );
1842 0 : }
1843 :
1844 : /* The Agave client needs to communicate to the shred tile what
1845 : the shred version is on boot, but shred tile does not live in the
1846 : same address space, so have the PoH tile pass the value through
1847 : via. a shared memory ulong. */
1848 :
1849 : static volatile ulong * fd_shred_version;
1850 :
1851 : void
1852 0 : fd_ext_shred_set_shred_version( ulong shred_version ) {
1853 0 : while( FD_UNLIKELY( !fd_shred_version ) ) FD_SPIN_PAUSE();
1854 0 : *fd_shred_version = shred_version;
1855 0 : }
1856 :
1857 : void
1858 : fd_ext_poh_publish_gossip_vote( uchar * data,
1859 0 : ulong data_len ) {
1860 0 : poh_link_publish( &gossip_dedup, 1UL, data, data_len );
1861 0 : }
1862 :
1863 : void
1864 : fd_ext_poh_publish_leader_schedule( uchar * data,
1865 0 : ulong data_len ) {
1866 0 : poh_link_publish( &stake_out, 2UL, data, data_len );
1867 0 : }
1868 :
1869 : void
1870 : fd_ext_poh_publish_cluster_info( uchar * data,
1871 0 : ulong data_len ) {
1872 0 : poh_link_publish( &crds_shred, 2UL, data, data_len );
1873 0 : }
1874 :
1875 : void
1876 : fd_ext_plugin_publish_replay_stage( ulong sig,
1877 : uchar * data,
1878 0 : ulong data_len ) {
1879 0 : poh_link_publish( &replay_plugin, sig, data, data_len );
1880 0 : }
1881 :
1882 : void
1883 : fd_ext_plugin_publish_start_progress( ulong sig,
1884 : uchar * data,
1885 0 : ulong data_len ) {
1886 0 : poh_link_publish( &start_progress_plugin, sig, data, data_len );
1887 0 : }
1888 :
1889 : void
1890 : fd_ext_plugin_publish_vote_listener( ulong sig,
1891 : uchar * data,
1892 0 : ulong data_len ) {
1893 0 : poh_link_publish( &vote_listener_plugin, sig, data, data_len );
1894 0 : }
1895 :
1896 : void
1897 : fd_ext_plugin_publish_periodic( ulong sig,
1898 : uchar * data,
1899 0 : ulong data_len ) {
1900 0 : poh_link_publish( &gossip_plugin, sig, data, data_len );
1901 0 : }
1902 :
1903 : void
1904 : fd_ext_resolv_publish_root_bank( uchar * data,
1905 0 : ulong data_len ) {
1906 0 : poh_link_publish( &replay_resolv, 0UL, data, data_len );
1907 0 : }
1908 :
1909 : void
1910 : fd_ext_resolv_publish_completed_blockhash( uchar * data,
1911 0 : ulong data_len ) {
1912 0 : poh_link_publish( &replay_resolv, 1UL, data, data_len );
1913 0 : }
1914 :
1915 : static inline fd_poh_out_ctx_t
1916 : out1( fd_topo_t const * topo,
1917 : fd_topo_tile_t const * tile,
1918 0 : char const * name ) {
1919 0 : ulong idx = ULONG_MAX;
1920 :
1921 0 : for( ulong i=0UL; i<tile->out_cnt; i++ ) {
1922 0 : fd_topo_link_t const * link = &topo->links[ tile->out_link_id[ i ] ];
1923 0 : if( !strcmp( link->name, name ) ) {
1924 0 : if( FD_UNLIKELY( idx!=ULONG_MAX ) ) FD_LOG_ERR(( "tile %s:%lu had multiple output links named %s but expected one", tile->name, tile->kind_id, name ));
1925 0 : idx = i;
1926 0 : }
1927 0 : }
1928 :
1929 0 : if( FD_UNLIKELY( idx==ULONG_MAX ) ) FD_LOG_ERR(( "tile %s:%lu had no output link named %s", tile->name, tile->kind_id, name ));
1930 :
1931 0 : void * mem = topo->workspaces[ topo->objs[ topo->links[ tile->out_link_id[ idx ] ].dcache_obj_id ].wksp_id ].wksp;
1932 0 : ulong chunk0 = fd_dcache_compact_chunk0( mem, topo->links[ tile->out_link_id[ idx ] ].dcache );
1933 0 : ulong wmark = fd_dcache_compact_wmark ( mem, topo->links[ tile->out_link_id[ idx ] ].dcache, topo->links[ tile->out_link_id[ idx ] ].mtu );
1934 :
1935 0 : return (fd_poh_out_ctx_t){ .idx = idx, .mem = mem, .chunk0 = chunk0, .wmark = wmark, .chunk = chunk0 };
1936 0 : }
1937 :
1938 : static void
1939 : unprivileged_init( fd_topo_t * topo,
1940 0 : fd_topo_tile_t * tile ) {
1941 0 : void * scratch = fd_topo_obj_laddr( topo, tile->tile_obj_id );
1942 :
1943 0 : FD_SCRATCH_ALLOC_INIT( l, scratch );
1944 0 : fd_poh_ctx_t * ctx = FD_SCRATCH_ALLOC_APPEND( l, alignof( fd_poh_ctx_t ), sizeof( fd_poh_ctx_t ) );
1945 0 : void * stake_ci = FD_SCRATCH_ALLOC_APPEND( l, fd_stake_ci_align(), fd_stake_ci_footprint() );
1946 0 : void * sha256 = FD_SCRATCH_ALLOC_APPEND( l, FD_SHA256_ALIGN, FD_SHA256_FOOTPRINT );
1947 :
1948 0 : #define NONNULL( x ) (__extension__({ \
1949 0 : __typeof__((x)) __x = (x); \
1950 0 : if( FD_UNLIKELY( !__x ) ) FD_LOG_ERR(( #x " was unexpectedly NULL" )); \
1951 0 : __x; }))
1952 :
1953 0 : ctx->stake_ci = NONNULL( fd_stake_ci_join( fd_stake_ci_new( stake_ci, &ctx->identity_key ) ) );
1954 0 : ctx->sha256 = NONNULL( fd_sha256_join( fd_sha256_new( sha256 ) ) );
1955 0 : ctx->current_leader_bank = NULL;
1956 0 : ctx->signal_leader_change = NULL;
1957 :
1958 0 : ctx->slot = 0UL;
1959 0 : ctx->hashcnt = 0UL;
1960 0 : ctx->last_hashcnt = 0UL;
1961 0 : ctx->highwater_leader_slot = ULONG_MAX;
1962 0 : ctx->next_leader_slot = ULONG_MAX;
1963 0 : ctx->reset_slot = ULONG_MAX;
1964 :
1965 0 : ctx->lagged_consecutive_leader_start = tile->poh.lagged_consecutive_leader_start;
1966 0 : ctx->expect_sequential_leader_slot = ULONG_MAX;
1967 :
1968 0 : ctx->microblocks_lower_bound = 0UL;
1969 :
1970 0 : ctx->max_active_descendant = 0UL;
1971 :
1972 0 : ulong poh_shred_obj_id = fd_pod_query_ulong( topo->props, "poh_shred", ULONG_MAX );
1973 0 : FD_TEST( poh_shred_obj_id!=ULONG_MAX );
1974 :
1975 0 : fd_shred_version = fd_fseq_join( fd_topo_obj_laddr( topo, poh_shred_obj_id ) );
1976 0 : FD_TEST( fd_shred_version );
1977 :
1978 0 : poh_link_init( &gossip_dedup, topo, tile, out1( topo, tile, "gossip_dedup" ).idx );
1979 0 : poh_link_init( &stake_out, topo, tile, out1( topo, tile, "stake_out" ).idx );
1980 0 : poh_link_init( &crds_shred, topo, tile, out1( topo, tile, "crds_shred" ).idx );
1981 0 : poh_link_init( &replay_resolv, topo, tile, out1( topo, tile, "replay_resol" ).idx );
1982 :
1983 0 : if( FD_LIKELY( tile->poh.plugins_enabled ) ) {
1984 0 : poh_link_init( &replay_plugin, topo, tile, out1( topo, tile, "replay_plugi" ).idx );
1985 0 : poh_link_init( &gossip_plugin, topo, tile, out1( topo, tile, "gossip_plugi" ).idx );
1986 0 : poh_link_init( &start_progress_plugin, topo, tile, out1( topo, tile, "startp_plugi" ).idx );
1987 0 : poh_link_init( &vote_listener_plugin, topo, tile, out1( topo, tile, "votel_plugin" ).idx );
1988 0 : } else {
1989 : /* Mark these mcaches as "available", so the system boots, but the
1990 : memory is not set so nothing will actually get published via.
1991 : the links. */
1992 0 : FD_COMPILER_MFENCE();
1993 0 : replay_plugin.mcache = (fd_frag_meta_t*)1;
1994 0 : gossip_plugin.mcache = (fd_frag_meta_t*)1;
1995 0 : start_progress_plugin.mcache = (fd_frag_meta_t*)1;
1996 0 : vote_listener_plugin.mcache = (fd_frag_meta_t*)1;
1997 0 : FD_COMPILER_MFENCE();
1998 0 : }
1999 :
2000 0 : FD_LOG_INFO(( "PoH waiting to be initialized by Agave client... %lu %lu", fd_poh_waiting_lock, fd_poh_returned_lock ));
2001 0 : FD_VOLATILE( fd_poh_global_ctx ) = ctx;
2002 0 : FD_COMPILER_MFENCE();
2003 0 : for(;;) {
2004 0 : if( FD_LIKELY( FD_VOLATILE_CONST( fd_poh_waiting_lock ) ) ) break;
2005 0 : FD_SPIN_PAUSE();
2006 0 : }
2007 0 : FD_VOLATILE( fd_poh_waiting_lock ) = 0UL;
2008 0 : FD_VOLATILE( fd_poh_returned_lock ) = 1UL;
2009 0 : FD_COMPILER_MFENCE();
2010 0 : for(;;) {
2011 0 : if( FD_UNLIKELY( !FD_VOLATILE_CONST( fd_poh_returned_lock ) ) ) break;
2012 0 : FD_SPIN_PAUSE();
2013 0 : }
2014 0 : FD_COMPILER_MFENCE();
2015 :
2016 0 : if( FD_UNLIKELY( ctx->reset_slot==ULONG_MAX ) ) FD_LOG_ERR(( "PoH was not initialized by Agave client" ));
2017 :
2018 0 : fd_histf_join( fd_histf_new( ctx->begin_leader_delay, FD_MHIST_SECONDS_MIN( POH, BEGIN_LEADER_DELAY_SECONDS ),
2019 0 : FD_MHIST_SECONDS_MAX( POH, BEGIN_LEADER_DELAY_SECONDS ) ) );
2020 0 : fd_histf_join( fd_histf_new( ctx->first_microblock_delay, FD_MHIST_SECONDS_MIN( POH, FIRST_MICROBLOCK_DELAY_SECONDS ),
2021 0 : FD_MHIST_SECONDS_MAX( POH, FIRST_MICROBLOCK_DELAY_SECONDS ) ) );
2022 0 : fd_histf_join( fd_histf_new( ctx->slot_done_delay, FD_MHIST_SECONDS_MIN( POH, SLOT_DONE_DELAY_SECONDS ),
2023 0 : FD_MHIST_SECONDS_MAX( POH, SLOT_DONE_DELAY_SECONDS ) ) );
2024 :
2025 0 : for( ulong i=0UL; i<tile->in_cnt; i++ ) {
2026 0 : fd_topo_link_t * link = &topo->links[ tile->in_link_id[ i ] ];
2027 0 : fd_topo_wksp_t * link_wksp = &topo->workspaces[ topo->objs[ link->dcache_obj_id ].wksp_id ];
2028 :
2029 0 : ctx->in[ i ].mem = link_wksp->wksp;
2030 0 : ctx->in[ i ].chunk0 = fd_dcache_compact_chunk0( ctx->in[ i ].mem, link->dcache );
2031 0 : ctx->in[ i ].wmark = fd_dcache_compact_wmark ( ctx->in[ i ].mem, link->dcache, link->mtu );
2032 :
2033 0 : if( FD_UNLIKELY( !strcmp( link->name, "stake_out" ) ) ) {
2034 0 : ctx->in_kind[ i ] = IN_KIND_STAKE;
2035 0 : } else if( FD_UNLIKELY( !strcmp( link->name, "pack_bank" ) ) ) {
2036 0 : ctx->in_kind[ i ] = IN_KIND_PACK;
2037 0 : } else if( FD_LIKELY( !strcmp( link->name, "bank_poh" ) ) ) {
2038 0 : ctx->in_kind[ i ] = IN_KIND_BANK;
2039 0 : } else {
2040 0 : FD_LOG_ERR(( "unexpected input link name %s", link->name ));
2041 0 : }
2042 0 : }
2043 :
2044 0 : *ctx->shred_out = out1( topo, tile, "poh_shred" );
2045 0 : *ctx->pack_out = out1( topo, tile, "poh_pack" );
2046 0 : ctx->plugin_out->mem = NULL;
2047 0 : if( FD_LIKELY( tile->poh.plugins_enabled ) ) {
2048 0 : *ctx->plugin_out = out1( topo, tile, "poh_plugin" );
2049 0 : }
2050 :
2051 0 : ulong scratch_top = FD_SCRATCH_ALLOC_FINI( l, 1UL );
2052 0 : if( FD_UNLIKELY( scratch_top > (ulong)scratch + scratch_footprint( tile ) ) )
2053 0 : FD_LOG_ERR(( "scratch overflow %lu %lu %lu", scratch_top - (ulong)scratch - scratch_footprint( tile ), scratch_top, (ulong)scratch + scratch_footprint( tile ) ));
2054 0 : }
2055 :
2056 : /* One tick, one microblock, one plugin slot end, one plugin slot start,
2057 : and one leader update. */
2058 0 : #define STEM_BURST (5UL)
2059 :
2060 : /* See explanation in fd_pack */
2061 0 : #define STEM_LAZY (128L*3000L)
2062 :
2063 0 : #define STEM_CALLBACK_CONTEXT_TYPE fd_poh_ctx_t
2064 0 : #define STEM_CALLBACK_CONTEXT_ALIGN alignof(fd_poh_ctx_t)
2065 :
2066 0 : #define STEM_CALLBACK_METRICS_WRITE metrics_write
2067 0 : #define STEM_CALLBACK_AFTER_CREDIT after_credit
2068 0 : #define STEM_CALLBACK_BEFORE_FRAG before_frag
2069 0 : #define STEM_CALLBACK_DURING_FRAG during_frag
2070 0 : #define STEM_CALLBACK_AFTER_FRAG after_frag
2071 :
2072 : #include "../../../../disco/stem/fd_stem.c"
2073 :
2074 : fd_topo_run_tile_t fd_tile_poh = {
2075 : .name = "poh",
2076 : .populate_allowed_seccomp = NULL,
2077 : .populate_allowed_fds = NULL,
2078 : .scratch_align = scratch_align,
2079 : .scratch_footprint = scratch_footprint,
2080 : .privileged_init = privileged_init,
2081 : .unprivileged_init = unprivileged_init,
2082 : .run = stem_run,
2083 : };
|