LCOV - code coverage report
Current view: top level - ballet/blake3 - blake3.c (source / functions) Hit Total Coverage
Test: cov.lcov Lines: 119 353 33.7 %
Date: 2024-11-13 11:58:15 Functions: 14 28 50.0 %

          Line data    Source code
       1             : // Source originally from https://github.com/BLAKE3-team/BLAKE3
       2             : // From commit: 64747d48ffe9d1fbf4b71e94cabeb8a211461081
       3             : 
       4             : #include <assert.h>
       5             : #include <stdbool.h>
       6             : #include <string.h>
       7             : 
       8             : #include "blake3.h"
       9             : #include "blake3_impl.h"
      10             : 
      11           0 : FD_FN_CONST const char *blake3_version(void) { return BLAKE3_VERSION_STRING; }
      12             : 
      13             : INLINE void chunk_state_init(blake3_chunk_state *self, const uint32_t key[8],
      14          33 :                              uint8_t flags) {
      15          33 :   fd_memcpy(self->cv, key, BLAKE3_KEY_LEN);
      16          33 :   self->chunk_counter = 0;
      17          33 :   memset(self->buf, 0, BLAKE3_BLOCK_LEN);
      18          33 :   self->buf_len = 0;
      19          33 :   self->blocks_compressed = 0;
      20          33 :   self->flags = flags;
      21          33 : }
      22             : 
      23             : INLINE void chunk_state_reset(blake3_chunk_state *self, const uint32_t key[8],
      24           0 :                               uint64_t chunk_counter) {
      25           0 :   fd_memcpy(self->cv, key, BLAKE3_KEY_LEN);
      26           0 :   self->chunk_counter = chunk_counter;
      27           0 :   self->blocks_compressed = 0;
      28           0 :   memset(self->buf, 0, BLAKE3_BLOCK_LEN);
      29           0 :   self->buf_len = 0;
      30           0 : }
      31             : 
      32          21 : INLINE size_t chunk_state_len(const blake3_chunk_state *self) {
      33          21 :   return (BLAKE3_BLOCK_LEN * (size_t)self->blocks_compressed) +
      34          21 :          ((size_t)self->buf_len);
      35          21 : }
      36             : 
      37             : INLINE size_t chunk_state_fill_buf(blake3_chunk_state *self,
      38          21 :                                    const uint8_t *input, size_t input_len) {
      39          21 :   size_t take = BLAKE3_BLOCK_LEN - ((size_t)self->buf_len);
      40          21 :   if (take > input_len) {
      41          21 :     take = input_len;
      42          21 :   }
      43          21 :   uint8_t *dest = self->buf + ((size_t)self->buf_len);
      44          21 :   fd_memcpy(dest, input, take);
      45          21 : #pragma GCC diagnostic push
      46          21 : #pragma GCC diagnostic ignored "-Wconversion"
      47          21 :   self->buf_len += (uint8_t)take;
      48          21 : #pragma GCC diagnostic pop
      49          21 :   return take;
      50          21 : }
      51             : 
      52          15 : INLINE uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state *self) {
      53          15 :   if (self->blocks_compressed == 0) {
      54          15 :     return CHUNK_START;
      55          15 :   } else {
      56           0 :     return 0;
      57           0 :   }
      58          15 : }
      59             : 
      60             : typedef struct {
      61             :   uint32_t input_cv[8];
      62             :   uint64_t counter;
      63             :   uint8_t block[BLAKE3_BLOCK_LEN];
      64             :   uint8_t block_len;
      65             :   uint8_t flags;
      66             : } output_t;
      67             : 
      68             : INLINE output_t make_output(const uint32_t input_cv[8],
      69             :                             const uint8_t block[BLAKE3_BLOCK_LEN],
      70             :                             uint8_t block_len, uint64_t counter,
      71          15 :                             uint8_t flags) {
      72          15 :   output_t ret;
      73          15 :   fd_memcpy(ret.input_cv, input_cv, 32);
      74          15 :   fd_memcpy(ret.block, block, BLAKE3_BLOCK_LEN);
      75          15 :   ret.block_len = block_len;
      76          15 :   ret.counter = counter;
      77          15 :   ret.flags = flags;
      78          15 :   return ret;
      79          15 : }
      80             : 
      81             : // Chaining values within a given chunk (specifically the compress_in_place
      82             : // interface) are represented as words. This avoids unnecessary bytes<->words
      83             : // conversion overhead in the portable implementation. However, the hash_many
      84             : // interface handles both user input and parent node blocks, so it accepts
      85             : // bytes. For that reason, chaining values in the CV stack are represented as
      86             : // bytes.
      87           0 : INLINE void output_chaining_value(const output_t *self, uint8_t cv[32]) {
      88           0 :   uint32_t cv_words[8];
      89           0 :   fd_memcpy(cv_words, self->input_cv, 32);
      90           0 :   blake3_compress_in_place(cv_words, self->block, self->block_len,
      91           0 :                            self->counter, self->flags);
      92           0 :   store_cv_words(cv, cv_words);
      93           0 : }
      94             : 
      95             : INLINE void output_root_bytes(const output_t *self, uint64_t seek, uint8_t *out,
      96          15 :                               size_t out_len) {
      97          15 :   uint64_t output_block_counter = seek / 64;
      98          15 :   size_t offset_within_block = seek % 64;
      99          15 :   uint8_t wide_buf[64];
     100          30 :   while (out_len > 0) {
     101          15 :     blake3_compress_xof(self->input_cv, self->block, self->block_len,
     102          15 :                         output_block_counter, self->flags | ROOT, wide_buf);
     103          15 :     size_t available_bytes = 64 - offset_within_block;
     104          15 :     size_t fd_memcpy_len;
     105          15 :     if (out_len > available_bytes) {
     106           0 :       fd_memcpy_len = available_bytes;
     107          15 :     } else {
     108          15 :       fd_memcpy_len = out_len;
     109          15 :     }
     110          15 :     fd_memcpy(out, wide_buf + offset_within_block, fd_memcpy_len);
     111          15 :     out += fd_memcpy_len;
     112          15 :     out_len -= fd_memcpy_len;
     113          15 :     output_block_counter += 1;
     114          15 :     offset_within_block = 0;
     115          15 :   }
     116          15 : }
     117             : 
     118             : INLINE void chunk_state_update(blake3_chunk_state *self, const uint8_t *input,
     119          18 :                                size_t input_len) {
     120          18 :   if (self->buf_len > 0) {
     121           3 :     size_t take = chunk_state_fill_buf(self, input, input_len);
     122           3 :     input += take;
     123           3 :     input_len -= take;
     124           3 :     if (input_len > 0) {
     125           0 :       blake3_compress_in_place(
     126           0 :           self->cv, self->buf, BLAKE3_BLOCK_LEN, self->chunk_counter,
     127           0 :           self->flags | chunk_state_maybe_start_flag(self));
     128           0 : #pragma GCC diagnostic push
     129           0 : #pragma GCC diagnostic ignored "-Wconversion"
     130           0 :       self->blocks_compressed += 1;
     131           0 : #pragma GCC diagnostic pop
     132           0 :       self->buf_len = 0;
     133           0 :       memset(self->buf, 0, BLAKE3_BLOCK_LEN);
     134           0 :     }
     135           3 :   }
     136             : 
     137          18 :   while (input_len > BLAKE3_BLOCK_LEN) {
     138           0 :     blake3_compress_in_place(self->cv, input, BLAKE3_BLOCK_LEN,
     139           0 :                              self->chunk_counter,
     140           0 :                              self->flags | chunk_state_maybe_start_flag(self));
     141           0 : #pragma GCC diagnostic push
     142           0 : #pragma GCC diagnostic ignored "-Wconversion"
     143           0 :     self->blocks_compressed += 1;
     144           0 : #pragma GCC diagnostic pop
     145           0 :     input += BLAKE3_BLOCK_LEN;
     146           0 :     input_len -= BLAKE3_BLOCK_LEN;
     147           0 :   }
     148             : 
     149          18 :   size_t take = chunk_state_fill_buf(self, input, input_len);
     150          18 :   input += take;
     151          18 :   input_len -= take;
     152          18 : }
     153             : 
     154          15 : INLINE output_t chunk_state_output(const blake3_chunk_state *self) {
     155          15 :   uint8_t block_flags =
     156          15 :       self->flags | chunk_state_maybe_start_flag(self) | CHUNK_END;
     157          15 :   return make_output(self->cv, self->buf, self->buf_len, self->chunk_counter,
     158          15 :                      block_flags);
     159          15 : }
     160             : 
     161             : INLINE output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN],
     162           0 :                               const uint32_t key[8], uint8_t flags) {
     163           0 :   return make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT);
     164           0 : }
     165             : 
     166             : // Given some input larger than one chunk, return the number of bytes that
     167             : // should go in the left subtree. This is the largest power-of-2 number of
     168             : // chunks that leaves at least 1 byte for the right subtree.
     169           0 : INLINE size_t left_len(size_t content_len) {
     170             :   // Subtract 1 to reserve at least one byte for the right side. content_len
     171             :   // should always be greater than BLAKE3_CHUNK_LEN.
     172           0 :   size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN;
     173           0 :   return round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN;
     174           0 : }
     175             : 
     176             : // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time
     177             : // on a single thread. Write out the chunk chaining values and return the
     178             : // number of chunks hashed. These chunks are never the root and never empty;
     179             : // those cases use a different codepath.
     180             : INLINE size_t compress_chunks_parallel(const uint8_t *input, size_t input_len,
     181             :                                        const uint32_t key[8],
     182             :                                        uint64_t chunk_counter, uint8_t flags,
     183           0 :                                        uint8_t *out) {
     184             : #if defined(BLAKE3_TESTING)
     185             :   assert(0 < input_len);
     186             :   assert(input_len <= MAX_SIMD_DEGREE * BLAKE3_CHUNK_LEN);
     187             : #endif
     188             : 
     189           0 :   const uint8_t *chunks_array[MAX_SIMD_DEGREE];
     190           0 :   size_t input_position = 0;
     191           0 :   size_t chunks_array_len = 0;
     192           0 :   while (input_len - input_position >= BLAKE3_CHUNK_LEN) {
     193           0 :     chunks_array[chunks_array_len] = &input[input_position];
     194           0 :     input_position += BLAKE3_CHUNK_LEN;
     195           0 :     chunks_array_len += 1;
     196           0 :   }
     197             : 
     198           0 :   blake3_hash_many(chunks_array, chunks_array_len,
     199           0 :                    BLAKE3_CHUNK_LEN / BLAKE3_BLOCK_LEN, key, chunk_counter,
     200           0 :                    true, flags, CHUNK_START, CHUNK_END, out);
     201             : 
     202             :   // Hash the remaining partial chunk, if there is one. Note that the empty
     203             :   // chunk (meaning the empty message) is a different codepath.
     204           0 :   if (input_len > input_position) {
     205           0 :     uint64_t counter = chunk_counter + (uint64_t)chunks_array_len;
     206           0 :     blake3_chunk_state chunk_state;
     207           0 :     chunk_state_init(&chunk_state, key, flags);
     208           0 :     chunk_state.chunk_counter = counter;
     209           0 :     chunk_state_update(&chunk_state, &input[input_position],
     210           0 :                        input_len - input_position);
     211           0 :     output_t output = chunk_state_output(&chunk_state);
     212           0 :     output_chaining_value(&output, &out[chunks_array_len * BLAKE3_OUT_LEN]);
     213           0 :     return chunks_array_len + 1;
     214           0 :   } else {
     215           0 :     return chunks_array_len;
     216           0 :   }
     217           0 : }
     218             : 
     219             : // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time
     220             : // on a single thread. Write out the parent chaining values and return the
     221             : // number of parents hashed. (If there's an odd input chaining value left over,
     222             : // return it as an additional output.) These parents are never the root and
     223             : // never empty; those cases use a different codepath.
     224             : INLINE size_t compress_parents_parallel(const uint8_t *child_chaining_values,
     225             :                                         size_t num_chaining_values,
     226             :                                         const uint32_t key[8], uint8_t flags,
     227           0 :                                         uint8_t *out) {
     228             : #if defined(BLAKE3_TESTING)
     229             :   assert(2 <= num_chaining_values);
     230             :   assert(num_chaining_values <= 2 * MAX_SIMD_DEGREE_OR_2);
     231             : #endif
     232             : 
     233           0 :   const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2];
     234           0 :   size_t parents_array_len = 0;
     235           0 :   while (num_chaining_values - (2 * parents_array_len) >= 2) {
     236           0 :     parents_array[parents_array_len] =
     237           0 :         &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN];
     238           0 :     parents_array_len += 1;
     239           0 :   }
     240             : 
     241           0 :   blake3_hash_many(parents_array, parents_array_len, 1, key,
     242           0 :                    0, // Parents always use counter 0.
     243           0 :                    false, flags | PARENT,
     244           0 :                    0, // Parents have no start flags.
     245           0 :                    0, // Parents have no end flags.
     246           0 :                    out);
     247             : 
     248             :   // If there's an odd child left over, it becomes an output.
     249           0 :   if (num_chaining_values > 2 * parents_array_len) {
     250           0 :     fd_memcpy(&out[parents_array_len * BLAKE3_OUT_LEN],
     251           0 :            &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN],
     252           0 :            BLAKE3_OUT_LEN);
     253           0 :     return parents_array_len + 1;
     254           0 :   } else {
     255           0 :     return parents_array_len;
     256           0 :   }
     257           0 : }
     258             : 
     259             : // The wide helper function returns (writes out) an array of chaining values
     260             : // and returns the length of that array. The number of chaining values returned
     261             : // is the dynamically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer,
     262             : // if the input is shorter than that many chunks. The reason for maintaining a
     263             : // wide array of chaining values going back up the tree, is to allow the
     264             : // implementation to hash as many parents in parallel as possible.
     265             : //
     266             : // As a special case when the SIMD degree is 1, this function will still return
     267             : // at least 2 outputs. This guarantees that this function doesn't perform the
     268             : // root compression. (If it did, it would use the wrong flags, and also we
     269             : // wouldn't be able to implement exendable output.) Note that this function is
     270             : // not used when the whole input is only 1 chunk long; that's a different
     271             : // codepath.
     272             : //
     273             : // Why not just have the caller split the input on the first update(), instead
     274             : // of implementing this special rule? Because we don't want to limit SIMD or
     275             : // multi-threading parallelism for that update().
     276             : static size_t blake3_compress_subtree_wide(const uint8_t *input,
     277             :                                            size_t input_len,
     278             :                                            const uint32_t key[8],
     279             :                                            uint64_t chunk_counter,
     280           0 :                                            uint8_t flags, uint8_t *out) {
     281             :   // Note that the single chunk case does *not* bump the SIMD degree up to 2
     282             :   // when it is 1. If this implementation adds multi-threading in the future,
     283             :   // this gives us the option of multi-threading even the 2-chunk case, which
     284             :   // can help performance on smaller platforms.
     285           0 :   if (input_len <= blake3_simd_degree() * BLAKE3_CHUNK_LEN) {
     286           0 :     return compress_chunks_parallel(input, input_len, key, chunk_counter, flags,
     287           0 :                                     out);
     288           0 :   }
     289             : 
     290             :   // With more than simd_degree chunks, we need to recurse. Start by dividing
     291             :   // the input into left and right subtrees. (Note that this is only optimal
     292             :   // as long as the SIMD degree is a power of 2. If we ever get a SIMD degree
     293             :   // of 3 or something, we'll need a more complicated strategy.)
     294           0 :   size_t left_input_len = left_len(input_len);
     295           0 :   size_t right_input_len = input_len - left_input_len;
     296           0 :   const uint8_t *right_input = &input[left_input_len];
     297           0 :   uint64_t right_chunk_counter =
     298           0 :       chunk_counter + (uint64_t)(left_input_len / BLAKE3_CHUNK_LEN);
     299             : 
     300             :   // Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to
     301             :   // account for the special case of returning 2 outputs when the SIMD degree
     302             :   // is 1.
     303           0 :   uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
     304           0 :   size_t degree = blake3_simd_degree();
     305           0 :   if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) {
     306             :     // The special case: We always use a degree of at least two, to make
     307             :     // sure there are two outputs. Except, as noted above, at the chunk
     308             :     // level, where we allow degree=1. (Note that the 1-chunk-input case is
     309             :     // a different codepath.)
     310           0 :     degree = 2;
     311           0 :   }
     312           0 :   uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN];
     313             : 
     314             :   // Recurse! If this implementation adds multi-threading support in the
     315             :   // future, this is where it will go.
     316           0 :   size_t left_n = blake3_compress_subtree_wide(input, left_input_len, key,
     317           0 :                                                chunk_counter, flags, cv_array);
     318           0 :   size_t right_n = blake3_compress_subtree_wide(
     319           0 :       right_input, right_input_len, key, right_chunk_counter, flags, right_cvs);
     320             : 
     321             :   // The special case again. If simd_degree=1, then we'll have left_n=1 and
     322             :   // right_n=1. Rather than compressing them into a single output, return
     323             :   // them directly, to make sure we always have at least two outputs.
     324           0 :   if (left_n == 1) {
     325           0 :     fd_memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
     326           0 :     return 2;
     327           0 :   }
     328             : 
     329             :   // Otherwise, do one layer of parent node compression.
     330           0 :   size_t num_chaining_values = left_n + right_n;
     331           0 :   return compress_parents_parallel(cv_array, num_chaining_values, key, flags,
     332           0 :                                    out);
     333           0 : }
     334             : 
     335             : // Hash a subtree with compress_subtree_wide(), and then condense the resulting
     336             : // list of chaining values down to a single parent node. Don't compress that
     337             : // last parent node, however. Instead, return its message bytes (the
     338             : // concatenated chaining values of its children). This is necessary when the
     339             : // first call to update() supplies a complete subtree, because the topmost
     340             : // parent node of that subtree could end up being the root. It's also necessary
     341             : // for extended output in the general case.
     342             : //
     343             : // As with compress_subtree_wide(), this function is not used on inputs of 1
     344             : // chunk or less. That's a different codepath.
     345             : INLINE void compress_subtree_to_parent_node(
     346             :     const uint8_t *input, size_t input_len, const uint32_t key[8],
     347           0 :     uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN]) {
     348             : #if defined(BLAKE3_TESTING)
     349             :   assert(input_len > BLAKE3_CHUNK_LEN);
     350             : #endif
     351             : 
     352           0 :   uint8_t cv_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
     353           0 :   size_t num_cvs = blake3_compress_subtree_wide(input, input_len, key,
     354           0 :                                                 chunk_counter, flags, cv_array);
     355           0 :   assert(num_cvs <= MAX_SIMD_DEGREE_OR_2);
     356             : 
     357             :   // If MAX_SIMD_DEGREE is greater than 2 and there's enough input,
     358             :   // compress_subtree_wide() returns more than 2 chaining values. Condense
     359             :   // them into 2 by forming parent nodes repeatedly.
     360           0 :   uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2];
     361             :   // The second half of this loop condition is always true, and we just
     362             :   // asserted it above. But GCC can't tell that it's always true, and if NDEBUG
     363             :   // is set on platforms where MAX_SIMD_DEGREE_OR_2 == 2, GCC emits spurious
     364             :   // warnings here. GCC 8.5 is particularly sensitive, so if you're changing
     365             :   // this code, test it against that version.
     366           0 :   while (num_cvs > 2 && num_cvs <= MAX_SIMD_DEGREE_OR_2) {
     367           0 :     num_cvs =
     368           0 :         compress_parents_parallel(cv_array, num_cvs, key, flags, out_array);
     369           0 :     fd_memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN);
     370           0 :   }
     371           0 :   fd_memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
     372           0 : }
     373             : 
     374             : INLINE void hasher_init_base(blake3_hasher *self, const uint32_t key[8],
     375          33 :                              uint8_t flags) {
     376          33 :   fd_memcpy(self->key, key, BLAKE3_KEY_LEN);
     377          33 :   chunk_state_init(&self->chunk, key, flags);
     378          33 :   self->cv_stack_len = 0;
     379          33 : }
     380             : 
     381          33 : void blake3_hasher_init(blake3_hasher *self) { hasher_init_base(self, IV, 0); }
     382             : 
     383             : void blake3_hasher_init_keyed(blake3_hasher *self,
     384           0 :                               const uint8_t key[BLAKE3_KEY_LEN]) {
     385           0 :   uint32_t key_words[8];
     386           0 :   load_key_words(key, key_words);
     387           0 :   hasher_init_base(self, key_words, KEYED_HASH);
     388           0 : }
     389             : 
     390             : void blake3_hasher_init_derive_key_raw(blake3_hasher *self, const void *context,
     391           0 :                                        size_t context_len) {
     392           0 :   blake3_hasher context_hasher;
     393           0 :   hasher_init_base(&context_hasher, IV, DERIVE_KEY_CONTEXT);
     394           0 :   blake3_hasher_update(&context_hasher, context, context_len);
     395           0 :   uint8_t context_key[BLAKE3_KEY_LEN];
     396           0 :   blake3_hasher_finalize(&context_hasher, context_key, BLAKE3_KEY_LEN);
     397           0 :   uint32_t context_key_words[8];
     398           0 :   load_key_words(context_key, context_key_words);
     399           0 :   hasher_init_base(self, context_key_words, DERIVE_KEY_MATERIAL);
     400           0 : }
     401             : 
     402           0 : void blake3_hasher_init_derive_key(blake3_hasher *self, const char *context) {
     403           0 :   blake3_hasher_init_derive_key_raw(self, context, strlen(context));
     404           0 : }
     405             : 
     406             : // As described in hasher_push_cv() below, we do "lazy merging", delaying
     407             : // merges until right before the next CV is about to be added. This is
     408             : // different from the reference implementation. Another difference is that we
     409             : // aren't always merging 1 chunk at a time. Instead, each CV might represent
     410             : // any power-of-two number of chunks, as long as the smaller-above-larger stack
     411             : // order is maintained. Instead of the "count the trailing 0-bits" algorithm
     412             : // described in the spec, we use a "count the total number of 1-bits" variant
     413             : // that doesn't require us to retain the subtree size of the CV on top of the
     414             : // stack. The principle is the same: each CV that should remain in the stack is
     415             : // represented by a 1-bit in the total number of chunks (or bytes) so far.
     416          15 : INLINE void hasher_merge_cv_stack(blake3_hasher *self, uint64_t total_len) {
     417          15 :   size_t post_merge_stack_len = (size_t)popcnt(total_len);
     418          15 :   while (self->cv_stack_len > post_merge_stack_len) {
     419           0 :     uint8_t *parent_node =
     420           0 :         &self->cv_stack[(self->cv_stack_len - 2) * BLAKE3_OUT_LEN];
     421           0 :     output_t output = parent_output(parent_node, self->key, self->chunk.flags);
     422           0 :     output_chaining_value(&output, parent_node);
     423           0 : #pragma GCC diagnostic push
     424           0 : #pragma GCC diagnostic ignored "-Wconversion"
     425           0 :     self->cv_stack_len -= 1;
     426           0 : #pragma GCC diagnostic pop
     427           0 :   }
     428          15 : }
     429             : 
     430             : // In reference_impl.rs, we merge the new CV with existing CVs from the stack
     431             : // before pushing it. We can do that because we know more input is coming, so
     432             : // we know none of the merges are root.
     433             : //
     434             : // This setting is different. We want to feed as much input as possible to
     435             : // compress_subtree_wide(), without setting aside anything for the chunk_state.
     436             : // If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once
     437             : // as a single subtree, if at all possible.
     438             : //
     439             : // This leads to two problems:
     440             : // 1) This 64 KiB input might be the only call that ever gets made to update.
     441             : //    In this case, the root node of the 64 KiB subtree would be the root node
     442             : //    of the whole tree, and it would need to be ROOT finalized. We can't
     443             : //    compress it until we know.
     444             : // 2) This 64 KiB input might complete a larger tree, whose root node is
     445             : //    similarly going to be the the root of the whole tree. For example, maybe
     446             : //    we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the
     447             : //    node at the root of the 256 KiB subtree until we know how to finalize it.
     448             : //
     449             : // The second problem is solved with "lazy merging". That is, when we're about
     450             : // to add a CV to the stack, we don't merge it with anything first, as the
     451             : // reference impl does. Instead we do merges using the *previous* CV that was
     452             : // added, which is sitting on top of the stack, and we put the new CV
     453             : // (unmerged) on top of the stack afterwards. This guarantees that we never
     454             : // merge the root node until finalize().
     455             : //
     456             : // Solving the first problem requires an additional tool,
     457             : // compress_subtree_to_parent_node(). That function always returns the top
     458             : // *two* chaining values of the subtree it's compressing. We then do lazy
     459             : // merging with each of them separately, so that the second CV will always
     460             : // remain unmerged. (That also helps us support extendable output when we're
     461             : // hashing an input all-at-once.)
     462             : INLINE void hasher_push_cv(blake3_hasher *self, uint8_t new_cv[BLAKE3_OUT_LEN],
     463           0 :                            uint64_t chunk_counter) {
     464           0 :   hasher_merge_cv_stack(self, chunk_counter);
     465           0 :   fd_memcpy(&self->cv_stack[self->cv_stack_len * BLAKE3_OUT_LEN], new_cv,
     466           0 :          BLAKE3_OUT_LEN);
     467           0 : #pragma GCC diagnostic push
     468           0 : #pragma GCC diagnostic ignored "-Wconversion"
     469           0 :   self->cv_stack_len += 1;
     470           0 : #pragma GCC diagnostic pop
     471           0 : }
     472             : 
     473             : void blake3_hasher_update(blake3_hasher *self, const void *input,
     474          18 :                           size_t input_len) {
     475             :   // Explicitly checking for zero avoids causing UB by passing a null pointer
     476             :   // to fd_memcpy. This comes up in practice with things like:
     477             :   //   std::vector<uint8_t> v;
     478             :   //   blake3_hasher_update(&hasher, v.data(), v.size());
     479          18 :   if (input_len == 0) {
     480           0 :     return;
     481           0 :   }
     482             : 
     483          18 :   const uint8_t *input_bytes = (const uint8_t *)input;
     484             : 
     485             :   // If we have some partial chunk bytes in the internal chunk_state, we need
     486             :   // to finish that chunk first.
     487          18 :   if (chunk_state_len(&self->chunk) > 0) {
     488           3 :     size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&self->chunk);
     489           3 :     if (take > input_len) {
     490           3 :       take = input_len;
     491           3 :     }
     492           3 :     chunk_state_update(&self->chunk, input_bytes, take);
     493           3 :     input_bytes += take;
     494           3 :     input_len -= take;
     495             :     // If we've filled the current chunk and there's more coming, finalize this
     496             :     // chunk and proceed. In this case we know it's not the root.
     497           3 :     if (input_len > 0) {
     498           0 :       output_t output = chunk_state_output(&self->chunk);
     499           0 :       uint8_t chunk_cv[32];
     500           0 :       output_chaining_value(&output, chunk_cv);
     501           0 :       hasher_push_cv(self, chunk_cv, self->chunk.chunk_counter);
     502           0 :       chunk_state_reset(&self->chunk, self->key, self->chunk.chunk_counter + 1);
     503           3 :     } else {
     504           3 :       return;
     505           3 :     }
     506           3 :   }
     507             : 
     508             :   // Now the chunk_state is clear, and we have more input. If there's more than
     509             :   // a single chunk (so, definitely not the root chunk), hash the largest whole
     510             :   // subtree we can, with the full benefits of SIMD (and maybe in the future,
     511             :   // multi-threading) parallelism. Two restrictions:
     512             :   // - The subtree has to be a power-of-2 number of chunks. Only subtrees along
     513             :   //   the right edge can be incomplete, and we don't know where the right edge
     514             :   //   is going to be until we get to finalize().
     515             :   // - The subtree must evenly divide the total number of chunks up until this
     516             :   //   point (if total is not 0). If the current incomplete subtree is only
     517             :   //   waiting for 1 more chunk, we can't hash a subtree of 4 chunks. We have
     518             :   //   to complete the current subtree first.
     519             :   // Because we might need to break up the input to form powers of 2, or to
     520             :   // evenly divide what we already have, this part runs in a loop.
     521          15 :   while (input_len > BLAKE3_CHUNK_LEN) {
     522           0 :     size_t subtree_len = round_down_to_power_of_2(input_len);
     523           0 :     uint64_t count_so_far = self->chunk.chunk_counter * BLAKE3_CHUNK_LEN;
     524             :     // Shrink the subtree_len until it evenly divides the count so far. We know
     525             :     // that subtree_len itself is a power of 2, so we can use a bitmasking
     526             :     // trick instead of an actual remainder operation. (Note that if the caller
     527             :     // consistently passes power-of-2 inputs of the same size, as is hopefully
     528             :     // typical, this loop condition will always fail, and subtree_len will
     529             :     // always be the full length of the input.)
     530             :     //
     531             :     // An aside: We don't have to shrink subtree_len quite this much. For
     532             :     // example, if count_so_far is 1, we could pass 2 chunks to
     533             :     // compress_subtree_to_parent_node. Since we'll get 2 CVs back, we'll still
     534             :     // get the right answer in the end, and we might get to use 2-way SIMD
     535             :     // parallelism. The problem with this optimization, is that it gets us
     536             :     // stuck always hashing 2 chunks. The total number of chunks will remain
     537             :     // odd, and we'll never graduate to higher degrees of parallelism. See
     538             :     // https://github.com/BLAKE3-team/BLAKE3/issues/69.
     539           0 :     while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) {
     540           0 :       subtree_len /= 2;
     541           0 :     }
     542             :     // The shrunken subtree_len might now be 1 chunk long. If so, hash that one
     543             :     // chunk by itself. Otherwise, compress the subtree into a pair of CVs.
     544           0 :     uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN;
     545           0 :     if (subtree_len <= BLAKE3_CHUNK_LEN) {
     546           0 :       blake3_chunk_state chunk_state;
     547           0 :       chunk_state_init(&chunk_state, self->key, self->chunk.flags);
     548           0 :       chunk_state.chunk_counter = self->chunk.chunk_counter;
     549           0 :       chunk_state_update(&chunk_state, input_bytes, subtree_len);
     550           0 :       output_t output = chunk_state_output(&chunk_state);
     551           0 :       uint8_t cv[BLAKE3_OUT_LEN];
     552           0 :       output_chaining_value(&output, cv);
     553           0 :       hasher_push_cv(self, cv, chunk_state.chunk_counter);
     554           0 :     } else {
     555             :       // This is the high-performance happy path, though getting here depends
     556             :       // on the caller giving us a long enough input.
     557           0 :       uint8_t cv_pair[2 * BLAKE3_OUT_LEN];
     558           0 :       compress_subtree_to_parent_node(input_bytes, subtree_len, self->key,
     559           0 :                                       self->chunk.chunk_counter,
     560           0 :                                       self->chunk.flags, cv_pair);
     561           0 :       hasher_push_cv(self, cv_pair, self->chunk.chunk_counter);
     562           0 :       hasher_push_cv(self, &cv_pair[BLAKE3_OUT_LEN],
     563           0 :                      self->chunk.chunk_counter + (subtree_chunks / 2));
     564           0 :     }
     565           0 :     self->chunk.chunk_counter += subtree_chunks;
     566           0 :     input_bytes += subtree_len;
     567           0 :     input_len -= subtree_len;
     568           0 :   }
     569             : 
     570             :   // If there's any remaining input less than a full chunk, add it to the chunk
     571             :   // state. In that case, also do a final merge loop to make sure the subtree
     572             :   // stack doesn't contain any unmerged pairs. The remaining input means we
     573             :   // know these merges are non-root. This merge loop isn't strictly necessary
     574             :   // here, because hasher_push_chunk_cv already does its own merge loop, but it
     575             :   // simplifies blake3_hasher_finalize below.
     576          15 :   if (input_len > 0) {
     577          15 :     chunk_state_update(&self->chunk, input_bytes, input_len);
     578          15 :     hasher_merge_cv_stack(self, self->chunk.chunk_counter);
     579          15 :   }
     580          15 : }
     581             : 
     582             : void blake3_hasher_finalize(const blake3_hasher *self, uint8_t *out,
     583          15 :                             size_t out_len) {
     584          15 :   blake3_hasher_finalize_seek(self, 0, out, out_len);
     585          15 : }
     586             : 
     587             : void blake3_hasher_finalize_seek(const blake3_hasher *self, uint64_t seek,
     588          15 :                                  uint8_t *out, size_t out_len) {
     589             :   // Explicitly checking for zero avoids causing UB by passing a null pointer
     590             :   // to fd_memcpy. This comes up in practice with things like:
     591             :   //   std::vector<uint8_t> v;
     592             :   //   blake3_hasher_finalize(&hasher, v.data(), v.size());
     593          15 :   if (out_len == 0) {
     594           0 :     return;
     595           0 :   }
     596             : 
     597             :   // If the subtree stack is empty, then the current chunk is the root.
     598          15 :   if (self->cv_stack_len == 0) {
     599          15 :     output_t output = chunk_state_output(&self->chunk);
     600          15 :     output_root_bytes(&output, seek, out, out_len);
     601          15 :     return;
     602          15 :   }
     603             :   // If there are any bytes in the chunk state, finalize that chunk and do a
     604             :   // roll-up merge between that chunk hash and every subtree in the stack. In
     605             :   // this case, the extra merge loop at the end of blake3_hasher_update
     606             :   // guarantees that none of the subtrees in the stack need to be merged with
     607             :   // each other first. Otherwise, if there are no bytes in the chunk state,
     608             :   // then the top of the stack is a chunk hash, and we start the merge from
     609             :   // that.
     610           0 :   output_t output;
     611           0 :   size_t cvs_remaining;
     612           0 :   if (chunk_state_len(&self->chunk) > 0) {
     613           0 :     cvs_remaining = self->cv_stack_len;
     614           0 :     output = chunk_state_output(&self->chunk);
     615           0 :   } else {
     616             :     // There are always at least 2 CVs in the stack in this case.
     617           0 : #pragma GCC diagnostic push
     618           0 : #pragma GCC diagnostic ignored "-Wsign-conversion"
     619           0 :     cvs_remaining = self->cv_stack_len - 2;
     620           0 : #pragma GCC diagnostic pop
     621           0 :     output = parent_output(&self->cv_stack[cvs_remaining * 32], self->key,
     622           0 :                            self->chunk.flags);
     623           0 :   }
     624           0 :   while (cvs_remaining > 0) {
     625           0 :     cvs_remaining -= 1;
     626           0 :     uint8_t parent_block[BLAKE3_BLOCK_LEN];
     627           0 :     fd_memcpy(parent_block, &self->cv_stack[cvs_remaining * 32], 32);
     628           0 :     output_chaining_value(&output, &parent_block[32]);
     629           0 :     output = parent_output(parent_block, self->key, self->chunk.flags);
     630           0 :   }
     631           0 :   output_root_bytes(&output, seek, out, out_len);
     632           0 : }
     633             : 
     634           0 : void blake3_hasher_reset(blake3_hasher *self) {
     635           0 :   chunk_state_reset(&self->chunk, self->key, 0);
     636           0 :   self->cv_stack_len = 0;
     637           0 : }

Generated by: LCOV version 1.14