Line data Source code
1 :
2 : // Source originally from https://github.com/BLAKE3-team/BLAKE3
3 : // From commit: c0ea395cf91d242f078c23d5f8d87eb9dd5f7b78
4 :
5 : #include "blake3_impl.h"
6 :
7 : #include <immintrin.h>
8 :
9 : #define _mm_shuffle_ps2(a, b, c) \
10 80 : (_mm_castps_si128( \
11 80 : _mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c))))
12 :
13 40 : INLINE __m128i loadu_128(const uint8_t src[16]) {
14 40 : return _mm_loadu_si128((const __m128i *)src);
15 40 : }
16 :
17 0 : INLINE __m256i loadu_256(const uint8_t src[32]) {
18 0 : return _mm256_loadu_si256((const __m256i *)src);
19 0 : }
20 :
21 0 : INLINE __m512i loadu_512(const uint8_t src[64]) {
22 0 : return _mm512_loadu_si512((const __m512i *)src);
23 0 : }
24 :
25 20 : INLINE void storeu_128(__m128i src, uint8_t dest[16]) {
26 20 : _mm_storeu_si128((__m128i *)dest, src);
27 20 : }
28 :
29 0 : INLINE void storeu_256(__m256i src, uint8_t dest[16]) {
30 0 : _mm256_storeu_si256((__m256i *)dest, src);
31 0 : }
32 :
33 420 : INLINE __m128i add_128(__m128i a, __m128i b) { return _mm_add_epi32(a, b); }
34 :
35 0 : INLINE __m256i add_256(__m256i a, __m256i b) { return _mm256_add_epi32(a, b); }
36 :
37 0 : INLINE __m512i add_512(__m512i a, __m512i b) { return _mm512_add_epi32(a, b); }
38 :
39 300 : INLINE __m128i xor_128(__m128i a, __m128i b) { return _mm_xor_si128(a, b); }
40 :
41 0 : INLINE __m256i xor_256(__m256i a, __m256i b) { return _mm256_xor_si256(a, b); }
42 :
43 0 : INLINE __m512i xor_512(__m512i a, __m512i b) { return _mm512_xor_si512(a, b); }
44 :
45 0 : INLINE __m128i set1_128(uint32_t x) { return _mm_set1_epi32((int32_t)x); }
46 :
47 0 : INLINE __m256i set1_256(uint32_t x) { return _mm256_set1_epi32((int32_t)x); }
48 :
49 0 : INLINE __m512i set1_512(uint32_t x) { return _mm512_set1_epi32((int32_t)x); }
50 :
51 10 : INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
52 10 : return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d);
53 10 : }
54 :
55 70 : INLINE __m128i rot16_128(__m128i x) { return _mm_ror_epi32(x, 16); }
56 :
57 0 : INLINE __m256i rot16_256(__m256i x) { return _mm256_ror_epi32(x, 16); }
58 :
59 0 : INLINE __m512i rot16_512(__m512i x) { return _mm512_ror_epi32(x, 16); }
60 :
61 70 : INLINE __m128i rot12_128(__m128i x) { return _mm_ror_epi32(x, 12); }
62 :
63 0 : INLINE __m256i rot12_256(__m256i x) { return _mm256_ror_epi32(x, 12); }
64 :
65 0 : INLINE __m512i rot12_512(__m512i x) { return _mm512_ror_epi32(x, 12); }
66 :
67 70 : INLINE __m128i rot8_128(__m128i x) { return _mm_ror_epi32(x, 8); }
68 :
69 0 : INLINE __m256i rot8_256(__m256i x) { return _mm256_ror_epi32(x, 8); }
70 :
71 0 : INLINE __m512i rot8_512(__m512i x) { return _mm512_ror_epi32(x, 8); }
72 :
73 70 : INLINE __m128i rot7_128(__m128i x) { return _mm_ror_epi32(x, 7); }
74 :
75 0 : INLINE __m256i rot7_256(__m256i x) { return _mm256_ror_epi32(x, 7); }
76 :
77 0 : INLINE __m512i rot7_512(__m512i x) { return _mm512_ror_epi32(x, 7); }
78 :
79 : /*
80 : * ----------------------------------------------------------------------------
81 : * compress_avx512
82 : * ----------------------------------------------------------------------------
83 : */
84 :
85 : INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
86 70 : __m128i m) {
87 70 : *row0 = add_128(add_128(*row0, m), *row1);
88 70 : *row3 = xor_128(*row3, *row0);
89 70 : *row3 = rot16_128(*row3);
90 70 : *row2 = add_128(*row2, *row3);
91 70 : *row1 = xor_128(*row1, *row2);
92 70 : *row1 = rot12_128(*row1);
93 70 : }
94 :
95 : INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
96 70 : __m128i m) {
97 70 : *row0 = add_128(add_128(*row0, m), *row1);
98 70 : *row3 = xor_128(*row3, *row0);
99 70 : *row3 = rot8_128(*row3);
100 70 : *row2 = add_128(*row2, *row3);
101 70 : *row1 = xor_128(*row1, *row2);
102 70 : *row1 = rot7_128(*row1);
103 70 : }
104 :
105 : // Note the optimization here of leaving row1 as the unrotated row, rather than
106 : // row0. All the message loads below are adjusted to compensate for this. See
107 : // discussion at https://github.com/sneves/blake2-avx2/pull/4
108 35 : INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
109 35 : *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3));
110 35 : *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
111 35 : *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1));
112 35 : }
113 :
114 35 : INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
115 35 : *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1));
116 35 : *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
117 35 : *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3));
118 35 : }
119 :
120 : INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8],
121 : const uint8_t block[BLAKE3_BLOCK_LEN],
122 5 : uint8_t block_len, uint64_t counter, uint8_t flags) {
123 5 : rows[0] = loadu_128((uint8_t *)&cv[0]);
124 5 : rows[1] = loadu_128((uint8_t *)&cv[4]);
125 5 : rows[2] = set4(IV[0], IV[1], IV[2], IV[3]);
126 5 : rows[3] = set4(counter_low(counter), counter_high(counter),
127 5 : (uint32_t)block_len, (uint32_t)flags);
128 :
129 5 : __m128i m0 = loadu_128(&block[sizeof(__m128i) * 0]);
130 5 : __m128i m1 = loadu_128(&block[sizeof(__m128i) * 1]);
131 5 : __m128i m2 = loadu_128(&block[sizeof(__m128i) * 2]);
132 5 : __m128i m3 = loadu_128(&block[sizeof(__m128i) * 3]);
133 :
134 5 : __m128i t0, t1, t2, t3, tt;
135 :
136 : // Round 1. The first round permutes the message words from the original
137 : // input order, into the groups that get mixed in parallel.
138 5 : t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); // 6 4 2 0
139 5 : g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
140 5 : t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); // 7 5 3 1
141 5 : g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
142 5 : diagonalize(&rows[0], &rows[2], &rows[3]);
143 5 : t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10 8
144 5 : t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3)); // 12 10 8 14
145 5 : g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
146 5 : t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11 9
147 5 : t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3)); // 13 11 9 15
148 5 : g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
149 5 : undiagonalize(&rows[0], &rows[2], &rows[3]);
150 5 : m0 = t0;
151 5 : m1 = t1;
152 5 : m2 = t2;
153 5 : m3 = t3;
154 :
155 : // Round 2. This round and all following rounds apply a fixed permutation
156 : // to the message words from the round before.
157 5 : t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
158 5 : t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
159 5 : g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
160 5 : t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
161 5 : tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
162 5 : t1 = _mm_blend_epi16(tt, t1, 0xCC);
163 5 : g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
164 5 : diagonalize(&rows[0], &rows[2], &rows[3]);
165 5 : t2 = _mm_unpacklo_epi64(m3, m1);
166 5 : tt = _mm_blend_epi16(t2, m2, 0xC0);
167 5 : t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
168 5 : g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
169 5 : t3 = _mm_unpackhi_epi32(m1, m3);
170 5 : tt = _mm_unpacklo_epi32(m2, t3);
171 5 : t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
172 5 : g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
173 5 : undiagonalize(&rows[0], &rows[2], &rows[3]);
174 5 : m0 = t0;
175 5 : m1 = t1;
176 5 : m2 = t2;
177 5 : m3 = t3;
178 :
179 : // Round 3
180 5 : t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
181 5 : t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
182 5 : g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
183 5 : t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
184 5 : tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
185 5 : t1 = _mm_blend_epi16(tt, t1, 0xCC);
186 5 : g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
187 5 : diagonalize(&rows[0], &rows[2], &rows[3]);
188 5 : t2 = _mm_unpacklo_epi64(m3, m1);
189 5 : tt = _mm_blend_epi16(t2, m2, 0xC0);
190 5 : t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
191 5 : g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
192 5 : t3 = _mm_unpackhi_epi32(m1, m3);
193 5 : tt = _mm_unpacklo_epi32(m2, t3);
194 5 : t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
195 5 : g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
196 5 : undiagonalize(&rows[0], &rows[2], &rows[3]);
197 5 : m0 = t0;
198 5 : m1 = t1;
199 5 : m2 = t2;
200 5 : m3 = t3;
201 :
202 : // Round 4
203 5 : t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
204 5 : t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
205 5 : g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
206 5 : t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
207 5 : tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
208 5 : t1 = _mm_blend_epi16(tt, t1, 0xCC);
209 5 : g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
210 5 : diagonalize(&rows[0], &rows[2], &rows[3]);
211 5 : t2 = _mm_unpacklo_epi64(m3, m1);
212 5 : tt = _mm_blend_epi16(t2, m2, 0xC0);
213 5 : t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
214 5 : g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
215 5 : t3 = _mm_unpackhi_epi32(m1, m3);
216 5 : tt = _mm_unpacklo_epi32(m2, t3);
217 5 : t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
218 5 : g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
219 5 : undiagonalize(&rows[0], &rows[2], &rows[3]);
220 5 : m0 = t0;
221 5 : m1 = t1;
222 5 : m2 = t2;
223 5 : m3 = t3;
224 :
225 : // Round 5
226 5 : t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
227 5 : t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
228 5 : g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
229 5 : t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
230 5 : tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
231 5 : t1 = _mm_blend_epi16(tt, t1, 0xCC);
232 5 : g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
233 5 : diagonalize(&rows[0], &rows[2], &rows[3]);
234 5 : t2 = _mm_unpacklo_epi64(m3, m1);
235 5 : tt = _mm_blend_epi16(t2, m2, 0xC0);
236 5 : t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
237 5 : g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
238 5 : t3 = _mm_unpackhi_epi32(m1, m3);
239 5 : tt = _mm_unpacklo_epi32(m2, t3);
240 5 : t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
241 5 : g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
242 5 : undiagonalize(&rows[0], &rows[2], &rows[3]);
243 5 : m0 = t0;
244 5 : m1 = t1;
245 5 : m2 = t2;
246 5 : m3 = t3;
247 :
248 : // Round 6
249 5 : t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
250 5 : t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
251 5 : g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
252 5 : t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
253 5 : tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
254 5 : t1 = _mm_blend_epi16(tt, t1, 0xCC);
255 5 : g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
256 5 : diagonalize(&rows[0], &rows[2], &rows[3]);
257 5 : t2 = _mm_unpacklo_epi64(m3, m1);
258 5 : tt = _mm_blend_epi16(t2, m2, 0xC0);
259 5 : t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
260 5 : g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
261 5 : t3 = _mm_unpackhi_epi32(m1, m3);
262 5 : tt = _mm_unpacklo_epi32(m2, t3);
263 5 : t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
264 5 : g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
265 5 : undiagonalize(&rows[0], &rows[2], &rows[3]);
266 5 : m0 = t0;
267 5 : m1 = t1;
268 5 : m2 = t2;
269 5 : m3 = t3;
270 :
271 : // Round 7
272 5 : t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
273 5 : t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
274 5 : g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
275 5 : t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
276 5 : tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
277 5 : t1 = _mm_blend_epi16(tt, t1, 0xCC);
278 5 : g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
279 5 : diagonalize(&rows[0], &rows[2], &rows[3]);
280 5 : t2 = _mm_unpacklo_epi64(m3, m1);
281 5 : tt = _mm_blend_epi16(t2, m2, 0xC0);
282 5 : t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
283 5 : g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
284 5 : t3 = _mm_unpackhi_epi32(m1, m3);
285 5 : tt = _mm_unpacklo_epi32(m2, t3);
286 5 : t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
287 5 : g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
288 5 : undiagonalize(&rows[0], &rows[2], &rows[3]);
289 5 : }
290 :
291 : void fd_blake3_compress_xof_avx512(const uint32_t cv[8],
292 : const uint8_t block[BLAKE3_BLOCK_LEN],
293 : uint8_t block_len, uint64_t counter,
294 5 : uint8_t flags, uint8_t out[64]) {
295 5 : __m128i rows[4];
296 5 : compress_pre(rows, cv, block, block_len, counter, flags);
297 5 : storeu_128(xor_128(rows[0], rows[2]), &out[0]);
298 5 : storeu_128(xor_128(rows[1], rows[3]), &out[16]);
299 5 : storeu_128(xor_128(rows[2], loadu_128((uint8_t *)&cv[0])), &out[32]);
300 5 : storeu_128(xor_128(rows[3], loadu_128((uint8_t *)&cv[4])), &out[48]);
301 5 : }
302 :
303 : void fd_blake3_compress_in_place_avx512(uint32_t cv[8],
304 : const uint8_t block[BLAKE3_BLOCK_LEN],
305 : uint8_t block_len, uint64_t counter,
306 0 : uint8_t flags) {
307 0 : __m128i rows[4];
308 0 : compress_pre(rows, cv, block, block_len, counter, flags);
309 0 : storeu_128(xor_128(rows[0], rows[2]), (uint8_t *)&cv[0]);
310 0 : storeu_128(xor_128(rows[1], rows[3]), (uint8_t *)&cv[4]);
311 0 : }
312 :
313 : /*
314 : * ----------------------------------------------------------------------------
315 : * hash4_avx512
316 : * ----------------------------------------------------------------------------
317 : */
318 :
319 0 : INLINE void round_fn4(__m128i v[16], __m128i m[16], size_t r) {
320 0 : v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
321 0 : v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
322 0 : v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
323 0 : v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
324 0 : v[0] = add_128(v[0], v[4]);
325 0 : v[1] = add_128(v[1], v[5]);
326 0 : v[2] = add_128(v[2], v[6]);
327 0 : v[3] = add_128(v[3], v[7]);
328 0 : v[12] = xor_128(v[12], v[0]);
329 0 : v[13] = xor_128(v[13], v[1]);
330 0 : v[14] = xor_128(v[14], v[2]);
331 0 : v[15] = xor_128(v[15], v[3]);
332 0 : v[12] = rot16_128(v[12]);
333 0 : v[13] = rot16_128(v[13]);
334 0 : v[14] = rot16_128(v[14]);
335 0 : v[15] = rot16_128(v[15]);
336 0 : v[8] = add_128(v[8], v[12]);
337 0 : v[9] = add_128(v[9], v[13]);
338 0 : v[10] = add_128(v[10], v[14]);
339 0 : v[11] = add_128(v[11], v[15]);
340 0 : v[4] = xor_128(v[4], v[8]);
341 0 : v[5] = xor_128(v[5], v[9]);
342 0 : v[6] = xor_128(v[6], v[10]);
343 0 : v[7] = xor_128(v[7], v[11]);
344 0 : v[4] = rot12_128(v[4]);
345 0 : v[5] = rot12_128(v[5]);
346 0 : v[6] = rot12_128(v[6]);
347 0 : v[7] = rot12_128(v[7]);
348 0 : v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
349 0 : v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
350 0 : v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
351 0 : v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
352 0 : v[0] = add_128(v[0], v[4]);
353 0 : v[1] = add_128(v[1], v[5]);
354 0 : v[2] = add_128(v[2], v[6]);
355 0 : v[3] = add_128(v[3], v[7]);
356 0 : v[12] = xor_128(v[12], v[0]);
357 0 : v[13] = xor_128(v[13], v[1]);
358 0 : v[14] = xor_128(v[14], v[2]);
359 0 : v[15] = xor_128(v[15], v[3]);
360 0 : v[12] = rot8_128(v[12]);
361 0 : v[13] = rot8_128(v[13]);
362 0 : v[14] = rot8_128(v[14]);
363 0 : v[15] = rot8_128(v[15]);
364 0 : v[8] = add_128(v[8], v[12]);
365 0 : v[9] = add_128(v[9], v[13]);
366 0 : v[10] = add_128(v[10], v[14]);
367 0 : v[11] = add_128(v[11], v[15]);
368 0 : v[4] = xor_128(v[4], v[8]);
369 0 : v[5] = xor_128(v[5], v[9]);
370 0 : v[6] = xor_128(v[6], v[10]);
371 0 : v[7] = xor_128(v[7], v[11]);
372 0 : v[4] = rot7_128(v[4]);
373 0 : v[5] = rot7_128(v[5]);
374 0 : v[6] = rot7_128(v[6]);
375 0 : v[7] = rot7_128(v[7]);
376 :
377 0 : v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
378 0 : v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
379 0 : v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
380 0 : v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
381 0 : v[0] = add_128(v[0], v[5]);
382 0 : v[1] = add_128(v[1], v[6]);
383 0 : v[2] = add_128(v[2], v[7]);
384 0 : v[3] = add_128(v[3], v[4]);
385 0 : v[15] = xor_128(v[15], v[0]);
386 0 : v[12] = xor_128(v[12], v[1]);
387 0 : v[13] = xor_128(v[13], v[2]);
388 0 : v[14] = xor_128(v[14], v[3]);
389 0 : v[15] = rot16_128(v[15]);
390 0 : v[12] = rot16_128(v[12]);
391 0 : v[13] = rot16_128(v[13]);
392 0 : v[14] = rot16_128(v[14]);
393 0 : v[10] = add_128(v[10], v[15]);
394 0 : v[11] = add_128(v[11], v[12]);
395 0 : v[8] = add_128(v[8], v[13]);
396 0 : v[9] = add_128(v[9], v[14]);
397 0 : v[5] = xor_128(v[5], v[10]);
398 0 : v[6] = xor_128(v[6], v[11]);
399 0 : v[7] = xor_128(v[7], v[8]);
400 0 : v[4] = xor_128(v[4], v[9]);
401 0 : v[5] = rot12_128(v[5]);
402 0 : v[6] = rot12_128(v[6]);
403 0 : v[7] = rot12_128(v[7]);
404 0 : v[4] = rot12_128(v[4]);
405 0 : v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
406 0 : v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
407 0 : v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
408 0 : v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
409 0 : v[0] = add_128(v[0], v[5]);
410 0 : v[1] = add_128(v[1], v[6]);
411 0 : v[2] = add_128(v[2], v[7]);
412 0 : v[3] = add_128(v[3], v[4]);
413 0 : v[15] = xor_128(v[15], v[0]);
414 0 : v[12] = xor_128(v[12], v[1]);
415 0 : v[13] = xor_128(v[13], v[2]);
416 0 : v[14] = xor_128(v[14], v[3]);
417 0 : v[15] = rot8_128(v[15]);
418 0 : v[12] = rot8_128(v[12]);
419 0 : v[13] = rot8_128(v[13]);
420 0 : v[14] = rot8_128(v[14]);
421 0 : v[10] = add_128(v[10], v[15]);
422 0 : v[11] = add_128(v[11], v[12]);
423 0 : v[8] = add_128(v[8], v[13]);
424 0 : v[9] = add_128(v[9], v[14]);
425 0 : v[5] = xor_128(v[5], v[10]);
426 0 : v[6] = xor_128(v[6], v[11]);
427 0 : v[7] = xor_128(v[7], v[8]);
428 0 : v[4] = xor_128(v[4], v[9]);
429 0 : v[5] = rot7_128(v[5]);
430 0 : v[6] = rot7_128(v[6]);
431 0 : v[7] = rot7_128(v[7]);
432 0 : v[4] = rot7_128(v[4]);
433 0 : }
434 :
435 0 : INLINE void transpose_vecs_128(__m128i vecs[4]) {
436 : // Interleave 32-bit lanes. The low unpack is lanes 00/11 and the high is
437 : // 22/33. Note that this doesn't split the vector into two lanes, as the
438 : // AVX2 counterparts do.
439 0 : __m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
440 0 : __m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
441 0 : __m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
442 0 : __m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
443 :
444 : // Interleave 64-bit lanes.
445 0 : __m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
446 0 : __m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
447 0 : __m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
448 0 : __m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);
449 :
450 0 : vecs[0] = abcd_0;
451 0 : vecs[1] = abcd_1;
452 0 : vecs[2] = abcd_2;
453 0 : vecs[3] = abcd_3;
454 0 : }
455 :
456 : INLINE void transpose_msg_vecs4(const uint8_t *const *inputs,
457 0 : size_t block_offset, __m128i out[16]) {
458 0 : out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(__m128i)]);
459 0 : out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(__m128i)]);
460 0 : out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(__m128i)]);
461 0 : out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(__m128i)]);
462 0 : out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(__m128i)]);
463 0 : out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(__m128i)]);
464 0 : out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(__m128i)]);
465 0 : out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(__m128i)]);
466 0 : out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(__m128i)]);
467 0 : out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(__m128i)]);
468 0 : out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(__m128i)]);
469 0 : out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(__m128i)]);
470 0 : out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(__m128i)]);
471 0 : out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(__m128i)]);
472 0 : out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(__m128i)]);
473 0 : out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(__m128i)]);
474 0 : for (size_t i = 0; i < 4; ++i) {
475 0 : _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
476 0 : }
477 0 : transpose_vecs_128(&out[0]);
478 0 : transpose_vecs_128(&out[4]);
479 0 : transpose_vecs_128(&out[8]);
480 0 : transpose_vecs_128(&out[12]);
481 0 : }
482 :
483 : INLINE void load_counters4(uint64_t counter, bool increment_counter,
484 0 : __m128i *out_lo, __m128i *out_hi) {
485 0 : int64_t mask = (increment_counter ? ~0 : 0);
486 0 : __m256i mask_vec = _mm256_set1_epi64x(mask);
487 0 : __m256i deltas = _mm256_setr_epi64x(0, 1, 2, 3);
488 0 : deltas = _mm256_and_si256(mask_vec, deltas);
489 0 : __m256i counters =
490 0 : _mm256_add_epi64(_mm256_set1_epi64x((int64_t)counter), deltas);
491 0 : *out_lo = _mm256_cvtepi64_epi32(counters);
492 0 : *out_hi = _mm256_cvtepi64_epi32(_mm256_srli_epi64(counters, 32));
493 0 : }
494 :
495 : static
496 : void fd_blake3_hash4_avx512(const uint8_t *const *inputs, size_t blocks,
497 : const uint32_t key[8], uint64_t counter,
498 : bool increment_counter, uint8_t flags,
499 0 : uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
500 0 : __m128i h_vecs[8] = {
501 0 : set1_128(key[0]), set1_128(key[1]), set1_128(key[2]), set1_128(key[3]),
502 0 : set1_128(key[4]), set1_128(key[5]), set1_128(key[6]), set1_128(key[7]),
503 0 : };
504 0 : __m128i counter_low_vec, counter_high_vec;
505 0 : load_counters4(counter, increment_counter, &counter_low_vec,
506 0 : &counter_high_vec);
507 0 : uint8_t block_flags = flags | flags_start;
508 :
509 0 : for (size_t block = 0; block < blocks; block++) {
510 0 : if (block + 1 == blocks) {
511 0 : block_flags |= flags_end;
512 0 : }
513 0 : __m128i block_len_vec = set1_128(BLAKE3_BLOCK_LEN);
514 0 : __m128i block_flags_vec = set1_128(block_flags);
515 0 : __m128i msg_vecs[16];
516 0 : transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
517 :
518 0 : __m128i v[16] = {
519 0 : h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
520 0 : h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
521 0 : set1_128(IV[0]), set1_128(IV[1]), set1_128(IV[2]), set1_128(IV[3]),
522 0 : counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
523 0 : };
524 0 : round_fn4(v, msg_vecs, 0);
525 0 : round_fn4(v, msg_vecs, 1);
526 0 : round_fn4(v, msg_vecs, 2);
527 0 : round_fn4(v, msg_vecs, 3);
528 0 : round_fn4(v, msg_vecs, 4);
529 0 : round_fn4(v, msg_vecs, 5);
530 0 : round_fn4(v, msg_vecs, 6);
531 0 : h_vecs[0] = xor_128(v[0], v[8]);
532 0 : h_vecs[1] = xor_128(v[1], v[9]);
533 0 : h_vecs[2] = xor_128(v[2], v[10]);
534 0 : h_vecs[3] = xor_128(v[3], v[11]);
535 0 : h_vecs[4] = xor_128(v[4], v[12]);
536 0 : h_vecs[5] = xor_128(v[5], v[13]);
537 0 : h_vecs[6] = xor_128(v[6], v[14]);
538 0 : h_vecs[7] = xor_128(v[7], v[15]);
539 :
540 0 : block_flags = flags;
541 0 : }
542 :
543 0 : transpose_vecs_128(&h_vecs[0]);
544 0 : transpose_vecs_128(&h_vecs[4]);
545 : // The first four vecs now contain the first half of each output, and the
546 : // second four vecs contain the second half of each output.
547 0 : storeu_128(h_vecs[0], &out[0 * sizeof(__m128i)]);
548 0 : storeu_128(h_vecs[4], &out[1 * sizeof(__m128i)]);
549 0 : storeu_128(h_vecs[1], &out[2 * sizeof(__m128i)]);
550 0 : storeu_128(h_vecs[5], &out[3 * sizeof(__m128i)]);
551 0 : storeu_128(h_vecs[2], &out[4 * sizeof(__m128i)]);
552 0 : storeu_128(h_vecs[6], &out[5 * sizeof(__m128i)]);
553 0 : storeu_128(h_vecs[3], &out[6 * sizeof(__m128i)]);
554 0 : storeu_128(h_vecs[7], &out[7 * sizeof(__m128i)]);
555 0 : }
556 :
557 : /*
558 : * ----------------------------------------------------------------------------
559 : * hash8_avx512
560 : * ----------------------------------------------------------------------------
561 : */
562 :
563 0 : INLINE void round_fn8(__m256i v[16], __m256i m[16], size_t r) {
564 0 : v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
565 0 : v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
566 0 : v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
567 0 : v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
568 0 : v[0] = add_256(v[0], v[4]);
569 0 : v[1] = add_256(v[1], v[5]);
570 0 : v[2] = add_256(v[2], v[6]);
571 0 : v[3] = add_256(v[3], v[7]);
572 0 : v[12] = xor_256(v[12], v[0]);
573 0 : v[13] = xor_256(v[13], v[1]);
574 0 : v[14] = xor_256(v[14], v[2]);
575 0 : v[15] = xor_256(v[15], v[3]);
576 0 : v[12] = rot16_256(v[12]);
577 0 : v[13] = rot16_256(v[13]);
578 0 : v[14] = rot16_256(v[14]);
579 0 : v[15] = rot16_256(v[15]);
580 0 : v[8] = add_256(v[8], v[12]);
581 0 : v[9] = add_256(v[9], v[13]);
582 0 : v[10] = add_256(v[10], v[14]);
583 0 : v[11] = add_256(v[11], v[15]);
584 0 : v[4] = xor_256(v[4], v[8]);
585 0 : v[5] = xor_256(v[5], v[9]);
586 0 : v[6] = xor_256(v[6], v[10]);
587 0 : v[7] = xor_256(v[7], v[11]);
588 0 : v[4] = rot12_256(v[4]);
589 0 : v[5] = rot12_256(v[5]);
590 0 : v[6] = rot12_256(v[6]);
591 0 : v[7] = rot12_256(v[7]);
592 0 : v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
593 0 : v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
594 0 : v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
595 0 : v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
596 0 : v[0] = add_256(v[0], v[4]);
597 0 : v[1] = add_256(v[1], v[5]);
598 0 : v[2] = add_256(v[2], v[6]);
599 0 : v[3] = add_256(v[3], v[7]);
600 0 : v[12] = xor_256(v[12], v[0]);
601 0 : v[13] = xor_256(v[13], v[1]);
602 0 : v[14] = xor_256(v[14], v[2]);
603 0 : v[15] = xor_256(v[15], v[3]);
604 0 : v[12] = rot8_256(v[12]);
605 0 : v[13] = rot8_256(v[13]);
606 0 : v[14] = rot8_256(v[14]);
607 0 : v[15] = rot8_256(v[15]);
608 0 : v[8] = add_256(v[8], v[12]);
609 0 : v[9] = add_256(v[9], v[13]);
610 0 : v[10] = add_256(v[10], v[14]);
611 0 : v[11] = add_256(v[11], v[15]);
612 0 : v[4] = xor_256(v[4], v[8]);
613 0 : v[5] = xor_256(v[5], v[9]);
614 0 : v[6] = xor_256(v[6], v[10]);
615 0 : v[7] = xor_256(v[7], v[11]);
616 0 : v[4] = rot7_256(v[4]);
617 0 : v[5] = rot7_256(v[5]);
618 0 : v[6] = rot7_256(v[6]);
619 0 : v[7] = rot7_256(v[7]);
620 :
621 0 : v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
622 0 : v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
623 0 : v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
624 0 : v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
625 0 : v[0] = add_256(v[0], v[5]);
626 0 : v[1] = add_256(v[1], v[6]);
627 0 : v[2] = add_256(v[2], v[7]);
628 0 : v[3] = add_256(v[3], v[4]);
629 0 : v[15] = xor_256(v[15], v[0]);
630 0 : v[12] = xor_256(v[12], v[1]);
631 0 : v[13] = xor_256(v[13], v[2]);
632 0 : v[14] = xor_256(v[14], v[3]);
633 0 : v[15] = rot16_256(v[15]);
634 0 : v[12] = rot16_256(v[12]);
635 0 : v[13] = rot16_256(v[13]);
636 0 : v[14] = rot16_256(v[14]);
637 0 : v[10] = add_256(v[10], v[15]);
638 0 : v[11] = add_256(v[11], v[12]);
639 0 : v[8] = add_256(v[8], v[13]);
640 0 : v[9] = add_256(v[9], v[14]);
641 0 : v[5] = xor_256(v[5], v[10]);
642 0 : v[6] = xor_256(v[6], v[11]);
643 0 : v[7] = xor_256(v[7], v[8]);
644 0 : v[4] = xor_256(v[4], v[9]);
645 0 : v[5] = rot12_256(v[5]);
646 0 : v[6] = rot12_256(v[6]);
647 0 : v[7] = rot12_256(v[7]);
648 0 : v[4] = rot12_256(v[4]);
649 0 : v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
650 0 : v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
651 0 : v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
652 0 : v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
653 0 : v[0] = add_256(v[0], v[5]);
654 0 : v[1] = add_256(v[1], v[6]);
655 0 : v[2] = add_256(v[2], v[7]);
656 0 : v[3] = add_256(v[3], v[4]);
657 0 : v[15] = xor_256(v[15], v[0]);
658 0 : v[12] = xor_256(v[12], v[1]);
659 0 : v[13] = xor_256(v[13], v[2]);
660 0 : v[14] = xor_256(v[14], v[3]);
661 0 : v[15] = rot8_256(v[15]);
662 0 : v[12] = rot8_256(v[12]);
663 0 : v[13] = rot8_256(v[13]);
664 0 : v[14] = rot8_256(v[14]);
665 0 : v[10] = add_256(v[10], v[15]);
666 0 : v[11] = add_256(v[11], v[12]);
667 0 : v[8] = add_256(v[8], v[13]);
668 0 : v[9] = add_256(v[9], v[14]);
669 0 : v[5] = xor_256(v[5], v[10]);
670 0 : v[6] = xor_256(v[6], v[11]);
671 0 : v[7] = xor_256(v[7], v[8]);
672 0 : v[4] = xor_256(v[4], v[9]);
673 0 : v[5] = rot7_256(v[5]);
674 0 : v[6] = rot7_256(v[6]);
675 0 : v[7] = rot7_256(v[7]);
676 0 : v[4] = rot7_256(v[4]);
677 0 : }
678 :
679 0 : INLINE void transpose_vecs_256(__m256i vecs[8]) {
680 : // Interleave 32-bit lanes. The low unpack is lanes 00/11/44/55, and the high
681 : // is 22/33/66/77.
682 0 : __m256i ab_0145 = _mm256_unpacklo_epi32(vecs[0], vecs[1]);
683 0 : __m256i ab_2367 = _mm256_unpackhi_epi32(vecs[0], vecs[1]);
684 0 : __m256i cd_0145 = _mm256_unpacklo_epi32(vecs[2], vecs[3]);
685 0 : __m256i cd_2367 = _mm256_unpackhi_epi32(vecs[2], vecs[3]);
686 0 : __m256i ef_0145 = _mm256_unpacklo_epi32(vecs[4], vecs[5]);
687 0 : __m256i ef_2367 = _mm256_unpackhi_epi32(vecs[4], vecs[5]);
688 0 : __m256i gh_0145 = _mm256_unpacklo_epi32(vecs[6], vecs[7]);
689 0 : __m256i gh_2367 = _mm256_unpackhi_epi32(vecs[6], vecs[7]);
690 :
691 : // Interleave 64-bit lanes. The low unpack is lanes 00/22 and the high is
692 : // 11/33.
693 0 : __m256i abcd_04 = _mm256_unpacklo_epi64(ab_0145, cd_0145);
694 0 : __m256i abcd_15 = _mm256_unpackhi_epi64(ab_0145, cd_0145);
695 0 : __m256i abcd_26 = _mm256_unpacklo_epi64(ab_2367, cd_2367);
696 0 : __m256i abcd_37 = _mm256_unpackhi_epi64(ab_2367, cd_2367);
697 0 : __m256i efgh_04 = _mm256_unpacklo_epi64(ef_0145, gh_0145);
698 0 : __m256i efgh_15 = _mm256_unpackhi_epi64(ef_0145, gh_0145);
699 0 : __m256i efgh_26 = _mm256_unpacklo_epi64(ef_2367, gh_2367);
700 0 : __m256i efgh_37 = _mm256_unpackhi_epi64(ef_2367, gh_2367);
701 :
702 : // Interleave 128-bit lanes.
703 0 : vecs[0] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x20);
704 0 : vecs[1] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x20);
705 0 : vecs[2] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x20);
706 0 : vecs[3] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x20);
707 0 : vecs[4] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x31);
708 0 : vecs[5] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x31);
709 0 : vecs[6] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x31);
710 0 : vecs[7] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x31);
711 0 : }
712 :
713 : INLINE void transpose_msg_vecs8(const uint8_t *const *inputs,
714 0 : size_t block_offset, __m256i out[16]) {
715 0 : out[0] = loadu_256(&inputs[0][block_offset + 0 * sizeof(__m256i)]);
716 0 : out[1] = loadu_256(&inputs[1][block_offset + 0 * sizeof(__m256i)]);
717 0 : out[2] = loadu_256(&inputs[2][block_offset + 0 * sizeof(__m256i)]);
718 0 : out[3] = loadu_256(&inputs[3][block_offset + 0 * sizeof(__m256i)]);
719 0 : out[4] = loadu_256(&inputs[4][block_offset + 0 * sizeof(__m256i)]);
720 0 : out[5] = loadu_256(&inputs[5][block_offset + 0 * sizeof(__m256i)]);
721 0 : out[6] = loadu_256(&inputs[6][block_offset + 0 * sizeof(__m256i)]);
722 0 : out[7] = loadu_256(&inputs[7][block_offset + 0 * sizeof(__m256i)]);
723 0 : out[8] = loadu_256(&inputs[0][block_offset + 1 * sizeof(__m256i)]);
724 0 : out[9] = loadu_256(&inputs[1][block_offset + 1 * sizeof(__m256i)]);
725 0 : out[10] = loadu_256(&inputs[2][block_offset + 1 * sizeof(__m256i)]);
726 0 : out[11] = loadu_256(&inputs[3][block_offset + 1 * sizeof(__m256i)]);
727 0 : out[12] = loadu_256(&inputs[4][block_offset + 1 * sizeof(__m256i)]);
728 0 : out[13] = loadu_256(&inputs[5][block_offset + 1 * sizeof(__m256i)]);
729 0 : out[14] = loadu_256(&inputs[6][block_offset + 1 * sizeof(__m256i)]);
730 0 : out[15] = loadu_256(&inputs[7][block_offset + 1 * sizeof(__m256i)]);
731 0 : for (size_t i = 0; i < 8; ++i) {
732 0 : _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
733 0 : }
734 0 : transpose_vecs_256(&out[0]);
735 0 : transpose_vecs_256(&out[8]);
736 0 : }
737 :
738 : INLINE void load_counters8(uint64_t counter, bool increment_counter,
739 0 : __m256i *out_lo, __m256i *out_hi) {
740 0 : int64_t mask = (increment_counter ? ~0 : 0);
741 0 : __m512i mask_vec = _mm512_set1_epi64(mask);
742 0 : __m512i deltas = _mm512_setr_epi64(0, 1, 2, 3, 4, 5, 6, 7);
743 0 : deltas = _mm512_and_si512(mask_vec, deltas);
744 0 : __m512i counters =
745 0 : _mm512_add_epi64(_mm512_set1_epi64((int64_t)counter), deltas);
746 0 : *out_lo = _mm512_cvtepi64_epi32(counters);
747 0 : *out_hi = _mm512_cvtepi64_epi32(_mm512_srli_epi64(counters, 32));
748 0 : }
749 :
750 : static
751 : void fd_blake3_hash8_avx512(const uint8_t *const *inputs, size_t blocks,
752 : const uint32_t key[8], uint64_t counter,
753 : bool increment_counter, uint8_t flags,
754 0 : uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
755 0 : __m256i h_vecs[8] = {
756 0 : set1_256(key[0]), set1_256(key[1]), set1_256(key[2]), set1_256(key[3]),
757 0 : set1_256(key[4]), set1_256(key[5]), set1_256(key[6]), set1_256(key[7]),
758 0 : };
759 0 : __m256i counter_low_vec, counter_high_vec;
760 0 : load_counters8(counter, increment_counter, &counter_low_vec,
761 0 : &counter_high_vec);
762 0 : uint8_t block_flags = flags | flags_start;
763 :
764 0 : for (size_t block = 0; block < blocks; block++) {
765 0 : if (block + 1 == blocks) {
766 0 : block_flags |= flags_end;
767 0 : }
768 0 : __m256i block_len_vec = set1_256(BLAKE3_BLOCK_LEN);
769 0 : __m256i block_flags_vec = set1_256(block_flags);
770 0 : __m256i msg_vecs[16];
771 0 : transpose_msg_vecs8(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
772 :
773 0 : __m256i v[16] = {
774 0 : h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
775 0 : h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
776 0 : set1_256(IV[0]), set1_256(IV[1]), set1_256(IV[2]), set1_256(IV[3]),
777 0 : counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
778 0 : };
779 0 : round_fn8(v, msg_vecs, 0);
780 0 : round_fn8(v, msg_vecs, 1);
781 0 : round_fn8(v, msg_vecs, 2);
782 0 : round_fn8(v, msg_vecs, 3);
783 0 : round_fn8(v, msg_vecs, 4);
784 0 : round_fn8(v, msg_vecs, 5);
785 0 : round_fn8(v, msg_vecs, 6);
786 0 : h_vecs[0] = xor_256(v[0], v[8]);
787 0 : h_vecs[1] = xor_256(v[1], v[9]);
788 0 : h_vecs[2] = xor_256(v[2], v[10]);
789 0 : h_vecs[3] = xor_256(v[3], v[11]);
790 0 : h_vecs[4] = xor_256(v[4], v[12]);
791 0 : h_vecs[5] = xor_256(v[5], v[13]);
792 0 : h_vecs[6] = xor_256(v[6], v[14]);
793 0 : h_vecs[7] = xor_256(v[7], v[15]);
794 :
795 0 : block_flags = flags;
796 0 : }
797 :
798 0 : transpose_vecs_256(h_vecs);
799 0 : storeu_256(h_vecs[0], &out[0 * sizeof(__m256i)]);
800 0 : storeu_256(h_vecs[1], &out[1 * sizeof(__m256i)]);
801 0 : storeu_256(h_vecs[2], &out[2 * sizeof(__m256i)]);
802 0 : storeu_256(h_vecs[3], &out[3 * sizeof(__m256i)]);
803 0 : storeu_256(h_vecs[4], &out[4 * sizeof(__m256i)]);
804 0 : storeu_256(h_vecs[5], &out[5 * sizeof(__m256i)]);
805 0 : storeu_256(h_vecs[6], &out[6 * sizeof(__m256i)]);
806 0 : storeu_256(h_vecs[7], &out[7 * sizeof(__m256i)]);
807 0 : }
808 :
809 : /*
810 : * ----------------------------------------------------------------------------
811 : * hash16_avx512
812 : * ----------------------------------------------------------------------------
813 : */
814 :
815 0 : INLINE void round_fn16(__m512i v[16], __m512i m[16], size_t r) {
816 0 : v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
817 0 : v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
818 0 : v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
819 0 : v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
820 0 : v[0] = add_512(v[0], v[4]);
821 0 : v[1] = add_512(v[1], v[5]);
822 0 : v[2] = add_512(v[2], v[6]);
823 0 : v[3] = add_512(v[3], v[7]);
824 0 : v[12] = xor_512(v[12], v[0]);
825 0 : v[13] = xor_512(v[13], v[1]);
826 0 : v[14] = xor_512(v[14], v[2]);
827 0 : v[15] = xor_512(v[15], v[3]);
828 0 : v[12] = rot16_512(v[12]);
829 0 : v[13] = rot16_512(v[13]);
830 0 : v[14] = rot16_512(v[14]);
831 0 : v[15] = rot16_512(v[15]);
832 0 : v[8] = add_512(v[8], v[12]);
833 0 : v[9] = add_512(v[9], v[13]);
834 0 : v[10] = add_512(v[10], v[14]);
835 0 : v[11] = add_512(v[11], v[15]);
836 0 : v[4] = xor_512(v[4], v[8]);
837 0 : v[5] = xor_512(v[5], v[9]);
838 0 : v[6] = xor_512(v[6], v[10]);
839 0 : v[7] = xor_512(v[7], v[11]);
840 0 : v[4] = rot12_512(v[4]);
841 0 : v[5] = rot12_512(v[5]);
842 0 : v[6] = rot12_512(v[6]);
843 0 : v[7] = rot12_512(v[7]);
844 0 : v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
845 0 : v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
846 0 : v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
847 0 : v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
848 0 : v[0] = add_512(v[0], v[4]);
849 0 : v[1] = add_512(v[1], v[5]);
850 0 : v[2] = add_512(v[2], v[6]);
851 0 : v[3] = add_512(v[3], v[7]);
852 0 : v[12] = xor_512(v[12], v[0]);
853 0 : v[13] = xor_512(v[13], v[1]);
854 0 : v[14] = xor_512(v[14], v[2]);
855 0 : v[15] = xor_512(v[15], v[3]);
856 0 : v[12] = rot8_512(v[12]);
857 0 : v[13] = rot8_512(v[13]);
858 0 : v[14] = rot8_512(v[14]);
859 0 : v[15] = rot8_512(v[15]);
860 0 : v[8] = add_512(v[8], v[12]);
861 0 : v[9] = add_512(v[9], v[13]);
862 0 : v[10] = add_512(v[10], v[14]);
863 0 : v[11] = add_512(v[11], v[15]);
864 0 : v[4] = xor_512(v[4], v[8]);
865 0 : v[5] = xor_512(v[5], v[9]);
866 0 : v[6] = xor_512(v[6], v[10]);
867 0 : v[7] = xor_512(v[7], v[11]);
868 0 : v[4] = rot7_512(v[4]);
869 0 : v[5] = rot7_512(v[5]);
870 0 : v[6] = rot7_512(v[6]);
871 0 : v[7] = rot7_512(v[7]);
872 :
873 0 : v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
874 0 : v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
875 0 : v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
876 0 : v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
877 0 : v[0] = add_512(v[0], v[5]);
878 0 : v[1] = add_512(v[1], v[6]);
879 0 : v[2] = add_512(v[2], v[7]);
880 0 : v[3] = add_512(v[3], v[4]);
881 0 : v[15] = xor_512(v[15], v[0]);
882 0 : v[12] = xor_512(v[12], v[1]);
883 0 : v[13] = xor_512(v[13], v[2]);
884 0 : v[14] = xor_512(v[14], v[3]);
885 0 : v[15] = rot16_512(v[15]);
886 0 : v[12] = rot16_512(v[12]);
887 0 : v[13] = rot16_512(v[13]);
888 0 : v[14] = rot16_512(v[14]);
889 0 : v[10] = add_512(v[10], v[15]);
890 0 : v[11] = add_512(v[11], v[12]);
891 0 : v[8] = add_512(v[8], v[13]);
892 0 : v[9] = add_512(v[9], v[14]);
893 0 : v[5] = xor_512(v[5], v[10]);
894 0 : v[6] = xor_512(v[6], v[11]);
895 0 : v[7] = xor_512(v[7], v[8]);
896 0 : v[4] = xor_512(v[4], v[9]);
897 0 : v[5] = rot12_512(v[5]);
898 0 : v[6] = rot12_512(v[6]);
899 0 : v[7] = rot12_512(v[7]);
900 0 : v[4] = rot12_512(v[4]);
901 0 : v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
902 0 : v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
903 0 : v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
904 0 : v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
905 0 : v[0] = add_512(v[0], v[5]);
906 0 : v[1] = add_512(v[1], v[6]);
907 0 : v[2] = add_512(v[2], v[7]);
908 0 : v[3] = add_512(v[3], v[4]);
909 0 : v[15] = xor_512(v[15], v[0]);
910 0 : v[12] = xor_512(v[12], v[1]);
911 0 : v[13] = xor_512(v[13], v[2]);
912 0 : v[14] = xor_512(v[14], v[3]);
913 0 : v[15] = rot8_512(v[15]);
914 0 : v[12] = rot8_512(v[12]);
915 0 : v[13] = rot8_512(v[13]);
916 0 : v[14] = rot8_512(v[14]);
917 0 : v[10] = add_512(v[10], v[15]);
918 0 : v[11] = add_512(v[11], v[12]);
919 0 : v[8] = add_512(v[8], v[13]);
920 0 : v[9] = add_512(v[9], v[14]);
921 0 : v[5] = xor_512(v[5], v[10]);
922 0 : v[6] = xor_512(v[6], v[11]);
923 0 : v[7] = xor_512(v[7], v[8]);
924 0 : v[4] = xor_512(v[4], v[9]);
925 0 : v[5] = rot7_512(v[5]);
926 0 : v[6] = rot7_512(v[6]);
927 0 : v[7] = rot7_512(v[7]);
928 0 : v[4] = rot7_512(v[4]);
929 0 : }
930 :
931 : // 0b10001000, or lanes a0/a2/b0/b2 in little-endian order
932 : #define LO_IMM8 0x88
933 :
934 0 : INLINE __m512i unpack_lo_128(__m512i a, __m512i b) {
935 0 : return _mm512_shuffle_i32x4(a, b, LO_IMM8);
936 0 : }
937 :
938 : // 0b11011101, or lanes a1/a3/b1/b3 in little-endian order
939 : #define HI_IMM8 0xdd
940 :
941 0 : INLINE __m512i unpack_hi_128(__m512i a, __m512i b) {
942 0 : return _mm512_shuffle_i32x4(a, b, HI_IMM8);
943 0 : }
944 :
945 0 : INLINE void transpose_vecs_512(__m512i vecs[16]) {
946 : // Interleave 32-bit lanes. The _0 unpack is lanes
947 : // 0/0/1/1/4/4/5/5/8/8/9/9/12/12/13/13, and the _2 unpack is lanes
948 : // 2/2/3/3/6/6/7/7/10/10/11/11/14/14/15/15.
949 0 : __m512i ab_0 = _mm512_unpacklo_epi32(vecs[0], vecs[1]);
950 0 : __m512i ab_2 = _mm512_unpackhi_epi32(vecs[0], vecs[1]);
951 0 : __m512i cd_0 = _mm512_unpacklo_epi32(vecs[2], vecs[3]);
952 0 : __m512i cd_2 = _mm512_unpackhi_epi32(vecs[2], vecs[3]);
953 0 : __m512i ef_0 = _mm512_unpacklo_epi32(vecs[4], vecs[5]);
954 0 : __m512i ef_2 = _mm512_unpackhi_epi32(vecs[4], vecs[5]);
955 0 : __m512i gh_0 = _mm512_unpacklo_epi32(vecs[6], vecs[7]);
956 0 : __m512i gh_2 = _mm512_unpackhi_epi32(vecs[6], vecs[7]);
957 0 : __m512i ij_0 = _mm512_unpacklo_epi32(vecs[8], vecs[9]);
958 0 : __m512i ij_2 = _mm512_unpackhi_epi32(vecs[8], vecs[9]);
959 0 : __m512i kl_0 = _mm512_unpacklo_epi32(vecs[10], vecs[11]);
960 0 : __m512i kl_2 = _mm512_unpackhi_epi32(vecs[10], vecs[11]);
961 0 : __m512i mn_0 = _mm512_unpacklo_epi32(vecs[12], vecs[13]);
962 0 : __m512i mn_2 = _mm512_unpackhi_epi32(vecs[12], vecs[13]);
963 0 : __m512i op_0 = _mm512_unpacklo_epi32(vecs[14], vecs[15]);
964 0 : __m512i op_2 = _mm512_unpackhi_epi32(vecs[14], vecs[15]);
965 :
966 : // Interleave 64-bit lanes. The _0 unpack is lanes
967 : // 0/0/0/0/4/4/4/4/8/8/8/8/12/12/12/12, the _1 unpack is lanes
968 : // 1/1/1/1/5/5/5/5/9/9/9/9/13/13/13/13, the _2 unpack is lanes
969 : // 2/2/2/2/6/6/6/6/10/10/10/10/14/14/14/14, and the _3 unpack is lanes
970 : // 3/3/3/3/7/7/7/7/11/11/11/11/15/15/15/15.
971 0 : __m512i abcd_0 = _mm512_unpacklo_epi64(ab_0, cd_0);
972 0 : __m512i abcd_1 = _mm512_unpackhi_epi64(ab_0, cd_0);
973 0 : __m512i abcd_2 = _mm512_unpacklo_epi64(ab_2, cd_2);
974 0 : __m512i abcd_3 = _mm512_unpackhi_epi64(ab_2, cd_2);
975 0 : __m512i efgh_0 = _mm512_unpacklo_epi64(ef_0, gh_0);
976 0 : __m512i efgh_1 = _mm512_unpackhi_epi64(ef_0, gh_0);
977 0 : __m512i efgh_2 = _mm512_unpacklo_epi64(ef_2, gh_2);
978 0 : __m512i efgh_3 = _mm512_unpackhi_epi64(ef_2, gh_2);
979 0 : __m512i ijkl_0 = _mm512_unpacklo_epi64(ij_0, kl_0);
980 0 : __m512i ijkl_1 = _mm512_unpackhi_epi64(ij_0, kl_0);
981 0 : __m512i ijkl_2 = _mm512_unpacklo_epi64(ij_2, kl_2);
982 0 : __m512i ijkl_3 = _mm512_unpackhi_epi64(ij_2, kl_2);
983 0 : __m512i mnop_0 = _mm512_unpacklo_epi64(mn_0, op_0);
984 0 : __m512i mnop_1 = _mm512_unpackhi_epi64(mn_0, op_0);
985 0 : __m512i mnop_2 = _mm512_unpacklo_epi64(mn_2, op_2);
986 0 : __m512i mnop_3 = _mm512_unpackhi_epi64(mn_2, op_2);
987 :
988 : // Interleave 128-bit lanes. The _0 unpack is
989 : // 0/0/0/0/8/8/8/8/0/0/0/0/8/8/8/8, the _1 unpack is
990 : // 1/1/1/1/9/9/9/9/1/1/1/1/9/9/9/9, and so on.
991 0 : __m512i abcdefgh_0 = unpack_lo_128(abcd_0, efgh_0);
992 0 : __m512i abcdefgh_1 = unpack_lo_128(abcd_1, efgh_1);
993 0 : __m512i abcdefgh_2 = unpack_lo_128(abcd_2, efgh_2);
994 0 : __m512i abcdefgh_3 = unpack_lo_128(abcd_3, efgh_3);
995 0 : __m512i abcdefgh_4 = unpack_hi_128(abcd_0, efgh_0);
996 0 : __m512i abcdefgh_5 = unpack_hi_128(abcd_1, efgh_1);
997 0 : __m512i abcdefgh_6 = unpack_hi_128(abcd_2, efgh_2);
998 0 : __m512i abcdefgh_7 = unpack_hi_128(abcd_3, efgh_3);
999 0 : __m512i ijklmnop_0 = unpack_lo_128(ijkl_0, mnop_0);
1000 0 : __m512i ijklmnop_1 = unpack_lo_128(ijkl_1, mnop_1);
1001 0 : __m512i ijklmnop_2 = unpack_lo_128(ijkl_2, mnop_2);
1002 0 : __m512i ijklmnop_3 = unpack_lo_128(ijkl_3, mnop_3);
1003 0 : __m512i ijklmnop_4 = unpack_hi_128(ijkl_0, mnop_0);
1004 0 : __m512i ijklmnop_5 = unpack_hi_128(ijkl_1, mnop_1);
1005 0 : __m512i ijklmnop_6 = unpack_hi_128(ijkl_2, mnop_2);
1006 0 : __m512i ijklmnop_7 = unpack_hi_128(ijkl_3, mnop_3);
1007 :
1008 : // Interleave 128-bit lanes again for the final outputs.
1009 0 : vecs[0] = unpack_lo_128(abcdefgh_0, ijklmnop_0);
1010 0 : vecs[1] = unpack_lo_128(abcdefgh_1, ijklmnop_1);
1011 0 : vecs[2] = unpack_lo_128(abcdefgh_2, ijklmnop_2);
1012 0 : vecs[3] = unpack_lo_128(abcdefgh_3, ijklmnop_3);
1013 0 : vecs[4] = unpack_lo_128(abcdefgh_4, ijklmnop_4);
1014 0 : vecs[5] = unpack_lo_128(abcdefgh_5, ijklmnop_5);
1015 0 : vecs[6] = unpack_lo_128(abcdefgh_6, ijklmnop_6);
1016 0 : vecs[7] = unpack_lo_128(abcdefgh_7, ijklmnop_7);
1017 0 : vecs[8] = unpack_hi_128(abcdefgh_0, ijklmnop_0);
1018 0 : vecs[9] = unpack_hi_128(abcdefgh_1, ijklmnop_1);
1019 0 : vecs[10] = unpack_hi_128(abcdefgh_2, ijklmnop_2);
1020 0 : vecs[11] = unpack_hi_128(abcdefgh_3, ijklmnop_3);
1021 0 : vecs[12] = unpack_hi_128(abcdefgh_4, ijklmnop_4);
1022 0 : vecs[13] = unpack_hi_128(abcdefgh_5, ijklmnop_5);
1023 0 : vecs[14] = unpack_hi_128(abcdefgh_6, ijklmnop_6);
1024 0 : vecs[15] = unpack_hi_128(abcdefgh_7, ijklmnop_7);
1025 0 : }
1026 :
1027 : INLINE void transpose_msg_vecs16(const uint8_t *const *inputs,
1028 0 : size_t block_offset, __m512i out[16]) {
1029 0 : out[0] = loadu_512(&inputs[0][block_offset]);
1030 0 : out[1] = loadu_512(&inputs[1][block_offset]);
1031 0 : out[2] = loadu_512(&inputs[2][block_offset]);
1032 0 : out[3] = loadu_512(&inputs[3][block_offset]);
1033 0 : out[4] = loadu_512(&inputs[4][block_offset]);
1034 0 : out[5] = loadu_512(&inputs[5][block_offset]);
1035 0 : out[6] = loadu_512(&inputs[6][block_offset]);
1036 0 : out[7] = loadu_512(&inputs[7][block_offset]);
1037 0 : out[8] = loadu_512(&inputs[8][block_offset]);
1038 0 : out[9] = loadu_512(&inputs[9][block_offset]);
1039 0 : out[10] = loadu_512(&inputs[10][block_offset]);
1040 0 : out[11] = loadu_512(&inputs[11][block_offset]);
1041 0 : out[12] = loadu_512(&inputs[12][block_offset]);
1042 0 : out[13] = loadu_512(&inputs[13][block_offset]);
1043 0 : out[14] = loadu_512(&inputs[14][block_offset]);
1044 0 : out[15] = loadu_512(&inputs[15][block_offset]);
1045 0 : for (size_t i = 0; i < 16; ++i) {
1046 0 : _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
1047 0 : }
1048 0 : transpose_vecs_512(out);
1049 0 : }
1050 :
1051 : INLINE void load_counters16(uint64_t counter, bool increment_counter,
1052 0 : __m512i *out_lo, __m512i *out_hi) {
1053 0 : const __m512i mask = _mm512_set1_epi32(-(int32_t)increment_counter);
1054 0 : const __m512i deltas = _mm512_set_epi32(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
1055 0 : const __m512i masked_deltas = _mm512_and_si512(deltas, mask);
1056 0 : const __m512i low_words = _mm512_add_epi32(
1057 0 : _mm512_set1_epi32((int32_t)counter),
1058 0 : masked_deltas);
1059 : // The carry bit is 1 if the high bit of the word was 1 before addition and is
1060 : // 0 after.
1061 : // NOTE: It would be a bit more natural to use _mm512_cmp_epu32_mask to
1062 : // compute the carry bits here, and originally we did, but that intrinsic is
1063 : // broken under GCC 5.4. See https://github.com/BLAKE3-team/BLAKE3/issues/271.
1064 0 : const __m512i carries = _mm512_srli_epi32(
1065 0 : _mm512_andnot_si512(
1066 0 : low_words, // 0 after (gets inverted by andnot)
1067 0 : _mm512_set1_epi32((int32_t)counter)), // and 1 before
1068 0 : 31);
1069 0 : const __m512i high_words = _mm512_add_epi32(
1070 0 : _mm512_set1_epi32((int32_t)(counter >> 32)),
1071 0 : carries);
1072 0 : *out_lo = low_words;
1073 0 : *out_hi = high_words;
1074 0 : }
1075 :
1076 : static
1077 : void fd_blake3_hash16_avx512(const uint8_t *const *inputs, size_t blocks,
1078 : const uint32_t key[8], uint64_t counter,
1079 : bool increment_counter, uint8_t flags,
1080 : uint8_t flags_start, uint8_t flags_end,
1081 0 : uint8_t *out) {
1082 0 : __m512i h_vecs[8] = {
1083 0 : set1_512(key[0]), set1_512(key[1]), set1_512(key[2]), set1_512(key[3]),
1084 0 : set1_512(key[4]), set1_512(key[5]), set1_512(key[6]), set1_512(key[7]),
1085 0 : };
1086 0 : __m512i counter_low_vec, counter_high_vec;
1087 0 : load_counters16(counter, increment_counter, &counter_low_vec,
1088 0 : &counter_high_vec);
1089 0 : uint8_t block_flags = flags | flags_start;
1090 :
1091 0 : for (size_t block = 0; block < blocks; block++) {
1092 0 : if (block + 1 == blocks) {
1093 0 : block_flags |= flags_end;
1094 0 : }
1095 0 : __m512i block_len_vec = set1_512(BLAKE3_BLOCK_LEN);
1096 0 : __m512i block_flags_vec = set1_512(block_flags);
1097 0 : __m512i msg_vecs[16];
1098 0 : transpose_msg_vecs16(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
1099 :
1100 0 : __m512i v[16] = {
1101 0 : h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
1102 0 : h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
1103 0 : set1_512(IV[0]), set1_512(IV[1]), set1_512(IV[2]), set1_512(IV[3]),
1104 0 : counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
1105 0 : };
1106 0 : round_fn16(v, msg_vecs, 0);
1107 0 : round_fn16(v, msg_vecs, 1);
1108 0 : round_fn16(v, msg_vecs, 2);
1109 0 : round_fn16(v, msg_vecs, 3);
1110 0 : round_fn16(v, msg_vecs, 4);
1111 0 : round_fn16(v, msg_vecs, 5);
1112 0 : round_fn16(v, msg_vecs, 6);
1113 0 : h_vecs[0] = xor_512(v[0], v[8]);
1114 0 : h_vecs[1] = xor_512(v[1], v[9]);
1115 0 : h_vecs[2] = xor_512(v[2], v[10]);
1116 0 : h_vecs[3] = xor_512(v[3], v[11]);
1117 0 : h_vecs[4] = xor_512(v[4], v[12]);
1118 0 : h_vecs[5] = xor_512(v[5], v[13]);
1119 0 : h_vecs[6] = xor_512(v[6], v[14]);
1120 0 : h_vecs[7] = xor_512(v[7], v[15]);
1121 :
1122 0 : block_flags = flags;
1123 0 : }
1124 :
1125 : // transpose_vecs_512 operates on a 16x16 matrix of words, but we only have 8
1126 : // state vectors. Pad the matrix with zeros. After transposition, store the
1127 : // lower half of each vector.
1128 0 : __m512i padded[16] = {
1129 0 : h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
1130 0 : h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
1131 0 : set1_512(0), set1_512(0), set1_512(0), set1_512(0),
1132 0 : set1_512(0), set1_512(0), set1_512(0), set1_512(0),
1133 0 : };
1134 0 : transpose_vecs_512(padded);
1135 0 : _mm256_mask_storeu_epi32(&out[0 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[0]));
1136 0 : _mm256_mask_storeu_epi32(&out[1 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[1]));
1137 0 : _mm256_mask_storeu_epi32(&out[2 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[2]));
1138 0 : _mm256_mask_storeu_epi32(&out[3 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[3]));
1139 0 : _mm256_mask_storeu_epi32(&out[4 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[4]));
1140 0 : _mm256_mask_storeu_epi32(&out[5 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[5]));
1141 0 : _mm256_mask_storeu_epi32(&out[6 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[6]));
1142 0 : _mm256_mask_storeu_epi32(&out[7 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[7]));
1143 0 : _mm256_mask_storeu_epi32(&out[8 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[8]));
1144 0 : _mm256_mask_storeu_epi32(&out[9 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[9]));
1145 0 : _mm256_mask_storeu_epi32(&out[10 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[10]));
1146 0 : _mm256_mask_storeu_epi32(&out[11 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[11]));
1147 0 : _mm256_mask_storeu_epi32(&out[12 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[12]));
1148 0 : _mm256_mask_storeu_epi32(&out[13 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[13]));
1149 0 : _mm256_mask_storeu_epi32(&out[14 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[14]));
1150 0 : _mm256_mask_storeu_epi32(&out[15 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[15]));
1151 0 : }
1152 :
1153 : /*
1154 : * ----------------------------------------------------------------------------
1155 : * hash_many_avx512
1156 : * ----------------------------------------------------------------------------
1157 : */
1158 :
1159 : INLINE void hash_one_avx512(const uint8_t *input, size_t blocks,
1160 : const uint32_t key[8], uint64_t counter,
1161 : uint8_t flags, uint8_t flags_start,
1162 0 : uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) {
1163 0 : uint32_t cv[8];
1164 0 : memcpy(cv, key, BLAKE3_KEY_LEN);
1165 0 : uint8_t block_flags = flags | flags_start;
1166 0 : while (blocks > 0) {
1167 0 : if (blocks == 1) {
1168 0 : block_flags |= flags_end;
1169 0 : }
1170 0 : fd_blake3_compress_in_place_avx512(cv, input, BLAKE3_BLOCK_LEN, counter,
1171 0 : block_flags);
1172 0 : input = &input[BLAKE3_BLOCK_LEN];
1173 0 : blocks -= 1;
1174 0 : block_flags = flags;
1175 0 : }
1176 0 : memcpy(out, cv, BLAKE3_OUT_LEN);
1177 0 : }
1178 :
1179 : void fd_blake3_hash_many_avx512(const uint8_t *const *inputs, size_t num_inputs,
1180 : size_t blocks, const uint32_t key[8],
1181 : uint64_t counter, bool increment_counter,
1182 : uint8_t flags, uint8_t flags_start,
1183 0 : uint8_t flags_end, uint8_t *out) {
1184 0 : while (num_inputs >= 16) {
1185 0 : fd_blake3_hash16_avx512(inputs, blocks, key, counter, increment_counter, flags,
1186 0 : flags_start, flags_end, out);
1187 0 : if (increment_counter) {
1188 0 : counter += 16;
1189 0 : }
1190 0 : inputs += 16;
1191 0 : num_inputs -= 16;
1192 0 : out = &out[16 * BLAKE3_OUT_LEN];
1193 0 : }
1194 0 : while (num_inputs >= 8) {
1195 0 : fd_blake3_hash8_avx512(inputs, blocks, key, counter, increment_counter, flags,
1196 0 : flags_start, flags_end, out);
1197 0 : if (increment_counter) {
1198 0 : counter += 8;
1199 0 : }
1200 0 : inputs += 8;
1201 0 : num_inputs -= 8;
1202 0 : out = &out[8 * BLAKE3_OUT_LEN];
1203 0 : }
1204 0 : while (num_inputs >= 4) {
1205 0 : fd_blake3_hash4_avx512(inputs, blocks, key, counter, increment_counter, flags,
1206 0 : flags_start, flags_end, out);
1207 0 : if (increment_counter) {
1208 0 : counter += 4;
1209 0 : }
1210 0 : inputs += 4;
1211 0 : num_inputs -= 4;
1212 0 : out = &out[4 * BLAKE3_OUT_LEN];
1213 0 : }
1214 0 : while (num_inputs > 0) {
1215 0 : hash_one_avx512(inputs[0], blocks, key, counter, flags, flags_start,
1216 0 : flags_end, out);
1217 0 : if (increment_counter) {
1218 0 : counter += 1;
1219 0 : }
1220 0 : inputs += 1;
1221 0 : num_inputs -= 1;
1222 0 : out = &out[BLAKE3_OUT_LEN];
1223 0 : }
1224 0 : }
|