LCOV - code coverage report
Current view: top level - ballet/ed25519 - fd_ed25519_user.c (source / functions) Hit Total Coverage
Test: cov.lcov Lines: 106 118 89.8 %
Date: 2025-01-08 12:08:44 Functions: 4 5 80.0 %

          Line data    Source code
       1             : #include "fd_ed25519.h"
       2             : #include "fd_curve25519.h"
       3             : 
       4             : uchar * FD_FN_SENSITIVE
       5             : fd_ed25519_public_from_private( uchar         public_key [ static 32 ],
       6             :                                 uchar const   private_key[ static 32 ],
       7       32367 :                                 fd_sha512_t * sha ) {
       8             : 
       9             :   //  RFC 8032 - Edwards-Curve Digital Signature Algorithm (EdDSA)
      10             :   //
      11             :   //  5.1.5.  Key Generation
      12             :   //
      13             :   //  The private key is 32 octets (256 bits, corresponding to b) of
      14             :   //  cryptographically secure random data.  See [RFC4086] for a discussion
      15             :   //  about randomness.
      16             :   //
      17             :   //  The 32-byte public key is generated by the following steps.
      18             :   //
      19             :   //  1.  Hash the 32-byte private key using SHA-512, storing the digest in
      20             :   //      a 64-octet large buffer, denoted h.  Only the lower 32 bytes are
      21             :   //      used for generating the public key.
      22             : 
      23       32367 :   uchar s[ FD_SHA512_HASH_SZ ];
      24       32367 :   fd_sha512_fini( fd_sha512_append( fd_sha512_init( sha ), private_key, 32UL ), s );
      25             : 
      26             :   //  2.  Prune the buffer: The lowest three bits of the first octet are
      27             :   //      cleared, the highest bit of the last octet is cleared, and the
      28             :   //      second highest bit of the last octet is set.
      29             : 
      30       32367 :   s[ 0] &= (uchar)0xF8;
      31       32367 :   s[31] &= (uchar)0x7F;
      32       32367 :   s[31] |= (uchar)0x40;
      33             : 
      34             :   //  3.  Interpret the buffer as the little-endian integer, forming a
      35             :   //      secret scalar s.  Perform a fixed-base scalar multiplication
      36             :   //      [s]B.
      37             : 
      38       32367 :   fd_ed25519_point_t sB[1];
      39       32367 :   fd_ed25519_scalar_mul_base_const_time( sB, s );
      40             : 
      41             :   //  4.  The public key A is the encoding of the point [s]B.  First,
      42             :   //      encode the y-coordinate (in the range 0 <= y < p) as a little-
      43             :   //      endian string of 32 octets.  The most significant bit of the
      44             :   //      final octet is always zero.  To form the encoding of the point
      45             :   //      [s]B, copy the least significant bit of the x coordinate to the
      46             :   //      most significant bit of the final octet.  The result is the
      47             :   //      public key.
      48             : 
      49       32367 :   fd_ed25519_point_tobytes( public_key, sB );
      50             : 
      51             :   /* Sanitize */
      52             : 
      53       32367 :   fd_memset_explicit( s, 0, FD_SHA512_HASH_SZ );
      54       32367 :   fd_sha512_clear( sha );
      55             : 
      56       32367 :   return public_key;
      57       32367 : }
      58             : 
      59             : uchar * FD_FN_SENSITIVE
      60             : fd_ed25519_sign( uchar         sig[ static 64 ],
      61             :                  uchar const   msg[], /* msg_sz */
      62             :                  ulong         msg_sz,
      63             :                  uchar const   public_key[ static 32 ],
      64             :                  uchar const   private_key[ static 32 ],
      65     1727589 :                  fd_sha512_t * sha ) {
      66             : 
      67             :   //  RFC 8032 - Edwards-Curve Digital Signature Algorithm (EdDSA)
      68             :   //
      69             :   //  5.1.6.  Sign
      70             :   //
      71             :   //  The inputs to the signing procedure is the private key, a 32-octet
      72             :   //  string, and a message M of arbitrary size.  For Ed25519ctx and
      73             :   //  Ed25519ph, there is additionally a context C of at most 255 octets
      74             :   //  and a flag F, 0 for Ed25519ctx and 1 for Ed25519ph.
      75             :   //
      76             :   //  1.  Hash the private key, 32 octets, using SHA-512.  Let h denote the
      77             :   //      resulting digest.  Construct the secret scalar s from the first
      78             :   //      half of the digest, and the corresponding public key A, as
      79             :   //      described in the previous section.  Let prefix denote the second
      80             :   //      half of the hash digest, h[32],...,h[63].
      81             : 
      82     1727589 :   uchar s[ FD_SHA512_HASH_SZ ];
      83     1727589 :   fd_sha512_fini( fd_sha512_append( fd_sha512_init( sha ), private_key, 32UL ), s );
      84     1727589 :   s[ 0] &= (uchar)0xF8;
      85     1727589 :   s[31] &= (uchar)0x7F;
      86     1727589 :   s[31] |= (uchar)0x40;
      87     1727589 :   uchar * h = s + 32;
      88             : 
      89             :   /* public_key is an input */
      90             : 
      91             :   //  2.  Compute SHA-512(dom2(F, C) || prefix || PH(M)), where M is the
      92             :   //      message to be signed.  Interpret the 64-octet digest as a little-
      93             :   //      endian integer r.
      94             : 
      95     1727589 :   uchar r[ FD_SHA512_HASH_SZ ];
      96     1727589 :   fd_sha512_fini( fd_sha512_append( fd_sha512_append( fd_sha512_init( sha ), h, 32UL ), msg, msg_sz ), r );
      97             : 
      98             :   //  3.  Compute the point [r]B.  For efficiency, do this by first
      99             :   //      reducing r modulo L, the group order of B.  Let the string R be
     100             :   //      the encoding of this point.
     101             : 
     102     1727589 :   fd_curve25519_scalar_reduce( r, r );           /* reduce r mod L */
     103     1727589 :   fd_ed25519_point_t R[1];
     104     1727589 :   fd_ed25519_scalar_mul_base_const_time( R, r ); /* R = [r]B */
     105     1727589 :   fd_ed25519_point_tobytes( sig, R );
     106             : 
     107             :   //  4.  Compute SHA512(dom2(F, C) || R || A || PH(M)), and interpret the
     108             :   //      64-octet digest as a little-endian integer k.
     109             : 
     110             :   /* note: all inputs to k are public values */
     111     1727589 :   uchar k[ FD_SHA512_HASH_SZ ];
     112     1727589 :   fd_sha512_fini( fd_sha512_append( fd_sha512_append( fd_sha512_append( fd_sha512_init( sha ),
     113     1727589 :                   sig, 32UL ), public_key, 32UL ), msg, msg_sz ), k );
     114             : 
     115             :   //  5.  Compute S = (r + k * s) mod L.  For efficiency, again reduce k
     116             :   //      modulo L first.
     117             :   //
     118             :   //  6.  Form the signature of the concatenation of R (32 octets) and the
     119             :   //      little-endian encoding of S (32 octets; the three most
     120             :   //      significant bits of the final octet are always zero).
     121             : 
     122     1727589 :   fd_curve25519_scalar_reduce( k, k );
     123     1727589 :   fd_curve25519_scalar_muladd( ((uchar *)sig)+32, k, s, r );
     124             : 
     125             :   /* Sanitize */
     126             : 
     127             :   /* note: no need to sanitize k as all inputs to k are public values */
     128     1727589 :   fd_memset_explicit( s, 0, FD_SHA512_HASH_SZ );
     129     1727589 :   fd_memset_explicit( r, 0, FD_SHA512_HASH_SZ );
     130     1727589 :   fd_sha512_clear( sha );
     131             : 
     132     1727589 :   return sig;
     133     1727589 : }
     134             : 
     135             : int
     136             : fd_ed25519_verify( uchar const   msg[], /* msg_sz */
     137             :                    ulong         msg_sz,
     138             :                    uchar const   sig[ static 64 ],
     139             :                    uchar const   public_key[ static 32 ],
     140      975423 :                    fd_sha512_t * sha ) {
     141             : 
     142             :   //  RFC 8032 - Edwards-Curve Digital Signature Algorithm (EdDSA)
     143             :   //
     144             :   //  5.1.7.  Verify
     145             :   //
     146             :   //  1.  To verify a signature on a message M using public key A, with F
     147             :   //      being 0 for Ed25519ctx, 1 for Ed25519ph, and if Ed25519ctx or
     148             :   //      Ed25519ph is being used, C being the context, first split the
     149             :   //      signature into two 32-octet halves.  Decode the first half as a
     150             :   //      point R, and the second half as an integer S, in the range
     151             :   //      0 <= s < L.  Decode the public key A as point A'.  If any of the
     152             :   //      decodings fail (including S being out of range), the signature is
     153             :   //      invalid.
     154             : 
     155      975423 :   uchar const * r = sig;
     156      975423 :   uchar const * S = sig + 32;
     157             : 
     158             :   /* Check scalar s */
     159      975423 :   if( FD_UNLIKELY( !fd_curve25519_scalar_validate( S ) )) {
     160      217547 :     return FD_ED25519_ERR_SIG;
     161      217547 :   }
     162             : 
     163             :   /* Decompress public_key and point r, concurrently */
     164      757876 :   fd_ed25519_point_t Aprime[1], R[1];
     165      757876 :   int res = fd_ed25519_point_frombytes_2x( Aprime, public_key,   R, r );
     166             : 
     167             :   /* Check public key and point r:
     168             :      1. both public key and point r decompress successfully (RFC)
     169             :      2. both public key and point r are small order (verify_strict)
     170             : 
     171             :      There's another check that we currently do NOT enforce:
     172             :      whether public key and point r are canonical.
     173             :      Dalek 2.x (currently used by Agave) does NOT do any check.
     174             :      Dalek 4.x checks that the point r is canonical, but accepts
     175             :      a non canonical public key.
     176             : 
     177             :      Note: I couldn't find any test with non canonical points
     178             :      (all tests are non canonical + low order, that are excluded by
     179             :      the verify_strict rule). The reason is that to write such a
     180             :      test one needs to know the discrete log of a non canonical point.
     181             : 
     182             :      The following code checks that r is canonical (we can add it
     183             :      in when Agave switches to dalek 4.x).
     184             : 
     185             :         uchar compressed[ 32 ];
     186             :         fd_ed25519_affine_tobytes( compressed, R );
     187             :         if( FD_UNLIKELY( !fd_memeq( compressed, r, 32 ) ) ) {
     188             :           return FD_ED25519_ERR_SIG;
     189             :         }
     190             :     */
     191      757876 :   if( FD_UNLIKELY( res ) ) {
     192      132438 :     return res == 1 ? FD_ED25519_ERR_PUBKEY : FD_ED25519_ERR_SIG;
     193      132438 :   }
     194      625438 :   if( FD_UNLIKELY( fd_ed25519_affine_is_small_order(Aprime) ) ) {
     195        3358 :     return FD_ED25519_ERR_PUBKEY;
     196        3358 :   }
     197      622080 :   if( FD_UNLIKELY( fd_ed25519_affine_is_small_order(R) ) ) {
     198        1575 :     return FD_ED25519_ERR_SIG;
     199        1575 :   }
     200             : 
     201             :   //  2.  Compute SHA512(dom2(F, C) || R || A || PH(M)), and interpret the
     202             :   //      64-octet digest as a little-endian integer k.
     203             : 
     204      620505 :   uchar k[ 64 ];
     205      620505 :   fd_sha512_fini( fd_sha512_append( fd_sha512_append( fd_sha512_append( fd_sha512_init( sha ),
     206      620505 :                   r, 32UL ), public_key, 32UL ), msg, msg_sz ), k );
     207      620505 :   fd_curve25519_scalar_reduce( k, k );
     208             : 
     209             :   //  3.  Check the group equation [8][S]B = [8]R + [8][k]A'.  It's
     210             :   //      sufficient, but not required, to instead check [S]B = R + [k]A'.
     211             : 
     212             :   /* Compute R = [k](-A') + [S]B, with B base point.
     213             :      Note: this is not the same as R = [-k]A' + [S]B, because the order
     214             :      of A' is 8l (computing -k mod 8l would work). */
     215      620505 :   fd_ed25519_point_t Rcmp[1];
     216      620505 :   fd_ed25519_point_neg( Aprime, Aprime );
     217      620505 :   fd_ed25519_double_scalar_mul_base( Rcmp, k, Aprime, S );
     218             : 
     219             :   /* Compare R (computed) and R from signature.
     220             :      Note: many implementations do this comparison by compressing Rcmd,
     221             :      and compare it against the r buf as it appears in the signature.
     222             :      This implicitly prevents non-canonical R.
     223             :      However this also hides a field inv to compress Rcmp.
     224             :      In our implementation we compare the points (see the comment
     225             :      above on "Check public key and point r" for details). */
     226      620505 :   if( FD_LIKELY( fd_ed25519_point_eq_z1( Rcmp, R ) ) ) {
     227      249069 :     return FD_ED25519_SUCCESS;
     228      249069 :   }
     229      371436 :   return FD_ED25519_ERR_MSG;
     230      620505 : }
     231             : 
     232             : int fd_ed25519_verify_batch_single_msg( uchar const   msg[], /* msg_sz */
     233             :                                         ulong const   msg_sz,
     234             :                                         uchar const   signatures[ static 64 ], /* 64 * batch_sz */
     235             :                                         uchar const   pubkeys[ static 32 ],    /* 32 * batch_sz */
     236             :                                         fd_sha512_t * shas[ 1 ],               /* batch_sz */
     237       59412 :                                         uchar const   batch_sz ) {
     238       59412 : #define MAX 16
     239       59412 :   if( FD_UNLIKELY( batch_sz == 0 || batch_sz > MAX ) ) {
     240           0 :     return FD_ED25519_ERR_SIG;
     241           0 :   }
     242             : 
     243             : #if 0
     244             :   /* Naive */
     245             :   for( uchar i=0; i<batch_sz; i++ ) {
     246             :     int res = fd_ed25519_verify( msg, msg_sz, &signatures[ i*64 ], &pubkeys[ i*32 ], shas[0] );
     247             :     if( FD_UNLIKELY( res != FD_ED25519_SUCCESS ) ) {
     248             :       return res;
     249             :     }
     250             :   }
     251             :   return FD_ED25519_SUCCESS;
     252             : #else
     253             : 
     254       59412 :   fd_ed25519_point_t R     [MAX];
     255       59412 :   fd_ed25519_point_t Aprime[MAX];
     256       59412 :   uchar              k     [MAX * 32];
     257             : 
     258             :   /* The first batch_sz points are the R_j, the last are A'_j.
     259             :      Scalars will be stored accordingly. */
     260             : 
     261             :   /* First, we validate scalars, decompress public keys and points R_j,
     262             :      check low order points, and compute k_j.
     263             :      TODO: optimize, this is 20% of the total time. */
     264      210303 :   for( int j=0; j<batch_sz; j++ ) {
     265             : 
     266      151455 :     uchar const * r = signatures + 64*j;
     267      151455 :     uchar const * S = signatures + 32 + 64*j;
     268      151455 :     uchar const * public_key = pubkeys + 32*j;
     269             : 
     270             :     /* Check scalar s */
     271      151455 :     if( FD_UNLIKELY( !fd_curve25519_scalar_validate( S ) )) {
     272           6 :       return FD_ED25519_ERR_SIG;
     273           6 :     }
     274             : 
     275             :     /* Decompress public_key and point r, concurrently */
     276      151449 :     int res = fd_ed25519_point_frombytes_2x( &Aprime[j], public_key,   &R[j], r );
     277             : 
     278             :     /* Check public key and point r */
     279      151449 :     if( FD_UNLIKELY( res ) ) {
     280          69 :       return res == 1 ? FD_ED25519_ERR_PUBKEY : FD_ED25519_ERR_SIG;
     281          69 :     }
     282      151380 :     if( FD_UNLIKELY( fd_ed25519_affine_is_small_order(&Aprime[j]) ) ) {
     283         331 :       return FD_ED25519_ERR_PUBKEY;
     284         331 :     }
     285      151049 :     if( FD_UNLIKELY( fd_ed25519_affine_is_small_order(&R[j]) ) ) {
     286         158 :       return FD_ED25519_ERR_SIG;
     287         158 :     }
     288             : 
     289             :     /* Compute scalars k_j */
     290      150891 :     uchar _k[ 64 ];
     291      150891 :     fd_sha512_fini( fd_sha512_append( fd_sha512_append( fd_sha512_append( fd_sha512_init( shas[j] ),
     292      150891 :                     r, 32UL ), public_key, 32UL ), msg, msg_sz ), _k );
     293      150891 :     fd_curve25519_scalar_reduce( &k[32*j], _k );
     294      150891 :   }
     295             : 
     296       58848 :   fd_ed25519_point_t res[1];
     297      209121 :   for( uchar j=0; j<batch_sz; j++ ) {
     298      150303 :     uchar const * S = signatures + 32 + 64*j;
     299             : 
     300      150303 :     fd_ed25519_point_neg( &Aprime[j], &Aprime[j] );
     301      150303 :     fd_ed25519_double_scalar_mul_base( res, &k[32*j], &Aprime[j], S );
     302      150303 :     if( FD_UNLIKELY( !fd_ed25519_point_eq_z1( res, &R[j] ) ) ) {
     303          30 :       return FD_ED25519_ERR_MSG;
     304          30 :     }
     305             : 
     306      150303 :   }
     307       58818 :   return FD_ED25519_SUCCESS;
     308       58848 : #endif
     309       58848 : #undef MAX
     310       58848 : }
     311             : 
     312             : char const *
     313           0 : fd_ed25519_strerror( int err ) {
     314           0 :   switch( err ) {
     315           0 :   case FD_ED25519_SUCCESS:    return "success";
     316           0 :   case FD_ED25519_ERR_SIG:    return "bad signature";
     317           0 :   case FD_ED25519_ERR_PUBKEY: return "bad public key";
     318           0 :   case FD_ED25519_ERR_MSG:    return "bad message";
     319           0 :   default: break;
     320           0 :   }
     321           0 :   return "unknown";
     322           0 : }

Generated by: LCOV version 1.14