Line data Source code
1 : #ifndef HEADER_fd_src_choreo_eqvoc_fd_eqvoc_h
2 : #define HEADER_fd_src_choreo_eqvoc_fd_eqvoc_h
3 :
4 : #include "../../ballet/shred/fd_shred.h"
5 : #include "../../flamenco/leaders/fd_leaders.h"
6 : #include "../fd_choreo_base.h"
7 : #include "../../flamenco/runtime/fd_blockstore.h"
8 :
9 : /* fd_eqvoc presents an API for detecting and sending / receiving proofs
10 : of equivocation.
11 :
12 : APIs prefixed with `fd_eqvoc_proof` relate to constructing and
13 : verifying equivocation proofs from shreds.
14 :
15 : APIs prefixed with `fd_eqvoc_fec` relate to shred and FEC set
16 : metadata indexing to detect equivocating shreds.
17 :
18 : Equivocation is when a shred producer produces two or more versions
19 : of a shred for the same (slot, idx). An equivocation proof comprises
20 : two shreds that conflict in a way that imply the shreds' producer
21 : equivocated.
22 :
23 : The proof can be both direct and indirect (implied). A direct proof,
24 : for example, contains two shreds with the same shred index but
25 : different data payloads. An indirect proof contains two shreds with
26 : different shred indices, and the metadata on the shreds implies there
27 : must be two or more versions of a block for that slot. See
28 : `fd_eqvoc_proof_verify` for more details.
29 :
30 : Every FEC set must have the same signature for every shred in the
31 : set, so a different signature would indicate equivocation. Note in
32 : the case of merkle shreds, the shred signature is signed on the FEC
33 : set's merkle root, so every shred in the same FEC set must have the
34 : same signature. */
35 :
36 : /* FD_EQVOC_USE_HANDHOLDING: Define this to non-zero at compile time
37 : to turn on additional runtime checks and logging. */
38 :
39 : #ifndef FD_EQVOC_USE_HANDHOLDING
40 : #define FD_EQVOC_USE_HANDHOLDING 1
41 : #endif
42 :
43 0 : #define FD_EQVOC_FEC_MAX ( 67UL )
44 :
45 : struct fd_slot_fec {
46 : ulong slot;
47 : uint fec_set_idx;
48 : };
49 : typedef struct fd_slot_fec fd_slot_fec_t;
50 :
51 : /* clang-format off */
52 : static const fd_slot_fec_t fd_slot_fec_null = { 0 };
53 : #define FD_SLOT_FEC_NULL fd_slot_fec_null
54 : #define FD_SLOT_FEC_INVAL(key) (!((key).slot) & !((key).fec_set_idx))
55 0 : #define FD_SLOT_FEC_EQ(k0,k1) (!(((k0).slot) ^ ((k1).slot))) & !(((k0).fec_set_idx) ^ (((k1).fec_set_idx)))
56 0 : #define FD_SLOT_FEC_HASH(key) ((uint)(((key).slot)<<15UL) | (((key).fec_set_idx)))
57 : /* clang-format on */
58 :
59 : struct fd_eqvoc_fec {
60 : fd_slot_fec_t key;
61 : ulong next;
62 : ulong code_cnt;
63 : ulong data_cnt;
64 : uint last_idx;
65 : fd_ed25519_sig_t sig;
66 : };
67 : typedef struct fd_eqvoc_fec fd_eqvoc_fec_t;
68 :
69 : #define POOL_NAME fd_eqvoc_fec_pool
70 0 : #define POOL_T fd_eqvoc_fec_t
71 : #include "../../util/tmpl/fd_pool.c"
72 :
73 : /* clang-format off */
74 : #define MAP_NAME fd_eqvoc_fec_map
75 : #define MAP_ELE_T fd_eqvoc_fec_t
76 : #define MAP_KEY_T fd_slot_fec_t
77 0 : #define MAP_KEY_EQ(k0,k1) (FD_SLOT_FEC_EQ(*k0,*k1))
78 0 : #define MAP_KEY_HASH(key,seed) (FD_SLOT_FEC_HASH(*key)^seed)
79 : #include "../../util/tmpl/fd_map_chain.c"
80 : /* clang-format on */
81 :
82 : /* This is the standard MTU
83 :
84 : IPv6 MTU - IP / UDP headers = 1232
85 : DuplicateShredMaxPayloadSize = 1232 - 115
86 : DuplicateShred headers = 63
87 :
88 : https://github.com/anza-xyz/agave/blob/v2.0.3/gossip/src/cluster_info.rs#L113 */
89 :
90 0 : #define FD_EQVOC_PROOF_CHUNK_SZ (1232UL - 115UL - 63UL)
91 0 : #define FD_EQVOC_PROOF_CHUNK_CNT (( FD_EQVOC_PROOF_SZ / FD_EQVOC_PROOF_CHUNK_SZ ) + 1) /* 3 */
92 0 : #define FD_EQVOC_PROOF_SZ (2*FD_SHRED_MAX_SZ + 2*sizeof(ulong)) /* 2 shreds prefixed with sz, encoded in 3 chunks */
93 :
94 : /* The chunk_cnt is encoded in a UCHAR_MAX, so you can have at most
95 : UCHAR_MAX chunks */
96 :
97 : #define FD_EQVOC_PROOF_CHUNK_MIN ( ( FD_EQVOC_PROOF_SZ / UCHAR_MAX ) + 1 ) /* 20 */
98 :
99 0 : #define FD_EQVOC_PROOF_VERIFY_FAILURE (0)
100 0 : #define FD_EQVOC_PROOF_VERIFY_SUCCESS_SIGNATURE (1)
101 0 : #define FD_EQVOC_PROOF_VERIFY_SUCCESS_META (2)
102 0 : #define FD_EQVOC_PROOF_VERIFY_SUCCESS_LAST (3)
103 0 : #define FD_EQVOC_PROOF_VERIFY_SUCCESS_OVERLAP (4)
104 0 : #define FD_EQVOC_PROOF_VERIFY_SUCCESS_CHAINED (5)
105 :
106 0 : #define FD_EQVOC_PROOF_VERIFY_ERR_SLOT (-1) /* different slot */
107 0 : #define FD_EQVOC_PROOF_VERIFY_ERR_VERSION (-2) /* different shred version */
108 0 : #define FD_EQVOC_PROOF_VERIFY_ERR_TYPE (-3) /* wrong shred type (must be chained {resigned} merkle) */
109 0 : #define FD_EQVOC_PROOF_VERIFY_ERR_MERKLE (-4) /* merkle root failed */
110 0 : #define FD_EQVOC_PROOF_VERIFY_ERR_SIGNATURE (-5) /* sig verify of shred producer failed */
111 :
112 : #define SET_NAME fd_eqvoc_proof_set
113 : #define SET_MAX 256
114 : #include "../../util/tmpl/fd_set.c"
115 :
116 : struct fd_eqvoc_proof {
117 : fd_slot_pubkey_t key;
118 : ulong prev; /* reserved for data structure use */
119 : ulong next; /* reserved for data structure use*/
120 :
121 : fd_pubkey_t producer; /* producer of shreds' pubkey */
122 : void * bmtree_mem; /* scratch space for reconstructing
123 : the merkle root */
124 : ulong wallclock; /* `wallclock` */
125 : ulong chunk_cnt; /* `num_chunks` */
126 : ulong chunk_sz; /* `chunk_len` */
127 :
128 : /* static declaration of an fd_set that occupies 4 words ie. 256 bits
129 : that tracks which proof chunks have been received. */
130 :
131 : fd_eqvoc_proof_set_t set[UCHAR_MAX / sizeof( ulong )];
132 :
133 : /* DuplicateShred messages are serialized in the following format:
134 :
135 : ---------
136 : shred1_sz
137 : ---------
138 : shred1
139 : ---------
140 : shred2_sz
141 : ---------
142 : shred2
143 : ---------
144 :
145 : Each shred is prepended with its size in bytes, before being
146 : chunked.
147 : */
148 :
149 : uchar shreds[2 * FD_SHRED_MAX_SZ + 2 * sizeof(ulong)];
150 : };
151 : typedef struct fd_eqvoc_proof fd_eqvoc_proof_t;
152 :
153 : #define POOL_NAME fd_eqvoc_proof_pool
154 0 : #define POOL_T fd_eqvoc_proof_t
155 : #include "../../util/tmpl/fd_pool.c"
156 :
157 : /* clang-format off */
158 : #define MAP_NAME fd_eqvoc_proof_map
159 : #define MAP_ELE_T fd_eqvoc_proof_t
160 : #define MAP_KEY_T fd_slot_pubkey_t
161 0 : #define MAP_KEY_EQ(k0,k1) (FD_SLOT_PUBKEY_EQ(k0,k1))
162 0 : #define MAP_KEY_HASH(key,seed) (FD_SLOT_PUBKEY_HASH(key,seed))
163 : #include "../../util/tmpl/fd_map_chain.c"
164 : /* clang-format on */
165 :
166 : struct fd_eqvoc {
167 :
168 : /* primitives */
169 :
170 : fd_pubkey_t me; /* our pubkey */
171 : ulong fec_max;
172 : ulong proof_max;
173 : ulong shred_version; /* shred version we expect in all shreds in eqvoc-related msgs. */
174 :
175 : /* owned */
176 :
177 : fd_eqvoc_fec_t * fec_pool;
178 : fd_eqvoc_fec_map_t * fec_map;
179 : // fd_eqvoc_fec_dlist_t * fec_dlist;
180 : fd_eqvoc_proof_t * proof_pool;
181 : fd_eqvoc_proof_map_t * proof_map;
182 : fd_sha512_t * sha512;
183 : void * bmtree_mem;
184 :
185 : /* borrowed */
186 :
187 : fd_epoch_leaders_t const * leaders;
188 : };
189 : typedef struct fd_eqvoc fd_eqvoc_t;
190 :
191 : /* clang-format off */
192 :
193 : /* fd_eqvoc_{align,footprint} return the required alignment and
194 : footprint of a memory region suitable for use as eqvoc with up to
195 : node_max nodes and vote_max votes. */
196 :
197 : FD_FN_CONST static inline ulong
198 0 : fd_eqvoc_align( void ) {
199 0 : return alignof(fd_eqvoc_t);
200 0 : }
201 :
202 : FD_FN_CONST static inline ulong
203 0 : fd_eqvoc_footprint( ulong fec_max, ulong proof_max ) {
204 0 : return FD_LAYOUT_FINI(
205 0 : FD_LAYOUT_APPEND(
206 0 : FD_LAYOUT_APPEND(
207 0 : FD_LAYOUT_APPEND(
208 0 : FD_LAYOUT_APPEND(
209 0 : FD_LAYOUT_APPEND(
210 0 : FD_LAYOUT_APPEND(
211 0 : FD_LAYOUT_APPEND(
212 0 : FD_LAYOUT_INIT,
213 0 : alignof(fd_eqvoc_t), sizeof(fd_eqvoc_t) ),
214 0 : fd_eqvoc_fec_pool_align(), fd_eqvoc_fec_pool_footprint( fec_max ) ),
215 0 : fd_eqvoc_fec_map_align(), fd_eqvoc_fec_map_footprint( fec_max ) ),
216 0 : fd_eqvoc_proof_pool_align(), fd_eqvoc_proof_pool_footprint( proof_max ) ),
217 0 : fd_eqvoc_proof_map_align(), fd_eqvoc_proof_map_footprint( proof_max ) ),
218 0 : fd_sha512_align(), fd_sha512_footprint() ),
219 0 : fd_bmtree_commit_align(), fd_bmtree_commit_footprint( FD_SHRED_MERKLE_LAYER_CNT ) ),
220 0 : fd_eqvoc_align() );
221 0 : }
222 : /* clang-format on */
223 :
224 : /* fd_eqvoc_new formats an unused memory region for use as a eqvoc.
225 : mem is a non-NULL pointer to this region in the local address space
226 : with the required footprint and alignment. */
227 :
228 : void *
229 : fd_eqvoc_new( void * shmem, ulong fec_max, ulong proof_max, ulong seed );
230 :
231 : /* fd_eqvoc_join joins the caller to the eqvoc. eqvoc points to the
232 : first byte of the memory region backing the eqvoc in the caller's
233 : address space.
234 :
235 : Returns a pointer in the local address space to eqvoc on success. */
236 :
237 : fd_eqvoc_t *
238 : fd_eqvoc_join( void * sheqvoc );
239 :
240 : /* fd_eqvoc_leave leaves a current local join. Returns a pointer to the
241 : underlying shared memory region on success and NULL on failure (logs
242 : details). Reasons for failure include eqvoc is NULL. */
243 :
244 : void *
245 : fd_eqvoc_leave( fd_eqvoc_t const * eqvoc );
246 :
247 : /* fd_eqvoc_delete unformats a memory region used as a eqvoc.
248 : Assumes only the nobody is joined to the region. Returns a
249 : pointer to the underlying shared memory region or NULL if used
250 : obviously in error (e.g. eqvoc is obviously not a eqvoc ... logs
251 : details). The ownership of the memory region is transferred to the
252 : caller. */
253 :
254 : void *
255 : fd_eqvoc_delete( void * sheqvoc );
256 :
257 : /* fd_eqvoc_init initializes eqvoc with the expected shred version. */
258 :
259 : void
260 : fd_eqvoc_init( fd_eqvoc_t * eqvoc, ulong shred_version );
261 :
262 : /* fd_eqvoc_fec_query queries for FEC set metadata on (slot,
263 : fec_set_idx). At least one coding shred most be inserted to populate
264 : code_cnt, data_cnt, and the last data shred in the slot to populate
265 : last_idx. Otherwise fields are defaulted to 0, 0, FD_SHRED_IDX_NULL
266 : respectively. Callers should check whether fields are the default
267 : values before using them. */
268 :
269 : FD_FN_PURE static inline fd_eqvoc_fec_t const *
270 0 : fd_eqvoc_fec_query( fd_eqvoc_t const * eqvoc, ulong slot, uint fec_set_idx ) {
271 0 : fd_slot_fec_t key = { slot, fec_set_idx };
272 0 : return fd_eqvoc_fec_map_ele_query_const( eqvoc->fec_map, &key, NULL, eqvoc->fec_pool );
273 0 : }
274 :
275 : /* fd_eqvoc_fec_insert inserts a new FEC entry into eqvoc, indexed by
276 : (slot, fec_set_idx). */
277 :
278 : fd_eqvoc_fec_t *
279 : fd_eqvoc_fec_insert( fd_eqvoc_t * eqvoc, ulong slot, uint fec_set_idx );
280 :
281 : /* fd_eqvoc_fec_search searches for whether `shred` implies equivocation
282 : by checking for a conflict in the currently indexed FEC sets. Returns
283 : the conflicting entry if there is one, NULL otherwise.
284 :
285 : A FEC set "overlaps" with another if they both contain a data shred
286 : at the samed idx. For example, say we have a FEC set containing data
287 : shreds in the idx interval [13, 15] and another containing idxs [15,
288 : 20]. The first FEC set has fec_set_idx 13 and data_cnt 3. The second
289 : FEC set has fec_set_idx 15 and data_cnt 6. They overlap because they
290 : both contain a data shred at idx 15. Therefore, these two FEC sets
291 : imply equivocation.
292 :
293 : This overlap can be detected arithmetically by adding the data_cnt to
294 : the fec_set_idx that starts earlier. If the result is greater than
295 : the fec_set_idx that starts later, we know at least one data shred
296 : idx must overlap. In this example, 13 + 3 > 15, which indicates
297 : equivocation.
298 :
299 : We can check for this overlap both backwards and forwards. We know
300 : the max number of data shred idxs in a valid FEC set is 67. So we
301 : need to look back at most 67 FEC set idxs to find the previous FEC
302 : set. Similarly, we look forward at most data_cnt idxs to find the
303 : next FEC set. */
304 :
305 : fd_eqvoc_fec_t const *
306 : fd_eqvoc_fec_search( fd_eqvoc_t const * eqvoc, fd_shred_t const * shred );
307 :
308 : /* fd_eqvoc_proof_query queries for the proof at (slot, from). */
309 :
310 : FD_FN_PURE static inline fd_eqvoc_proof_t *
311 0 : fd_eqvoc_proof_query( fd_eqvoc_t * eqvoc, ulong slot, fd_pubkey_t const * from ) {
312 0 : fd_slot_pubkey_t key = { slot, *from };
313 0 : return fd_eqvoc_proof_map_ele_query( eqvoc->proof_map, &key, NULL, eqvoc->proof_pool );
314 0 : }
315 :
316 : /* fd_eqvoc_proof_query_const is the const version of the above. */
317 :
318 : FD_FN_PURE static inline fd_eqvoc_proof_t const *
319 0 : fd_eqvoc_proof_query_const( fd_eqvoc_t const * eqvoc, ulong slot, fd_pubkey_t const * from ) {
320 0 : fd_slot_pubkey_t key = { slot, *from };
321 0 : return fd_eqvoc_proof_map_ele_query_const( eqvoc->proof_map, &key, NULL, eqvoc->proof_pool );
322 0 : }
323 :
324 : /* fd_eqvoc_proof_insert inserts a proof entry into eqvoc, keyed by
325 : (slot, from) where from is the pubkey that generated the proof. */
326 :
327 : fd_eqvoc_proof_t *
328 : fd_eqvoc_proof_insert( fd_eqvoc_t * eqvoc, ulong slot, fd_pubkey_t const * from );
329 :
330 : void
331 : fd_eqvoc_proof_init( fd_eqvoc_proof_t * proof, fd_pubkey_t const * producer, ulong wallclock, ulong chunk_cnt, ulong chunk_sz, void * bmtree_mem );
332 :
333 : /* fd_eqvoc_proof_chunk_insert inserts a proof chunk into the proof.
334 : Proofs are divided into chunks before they are transmitted via
335 : gossip, so this function is necessary for reconstruction. */
336 :
337 : void
338 : fd_eqvoc_proof_chunk_insert( fd_eqvoc_proof_t * proof, fd_gossip_duplicate_shred_t const * chunk );
339 :
340 : /* fd_eqvoc_shreds_chunk_insert is a lower-level API for the above. */
341 :
342 : void
343 : fd_eqvoc_shreds_chunk_insert( fd_shred_t * shred1, fd_shred_t * shred2, fd_gossip_duplicate_shred_t const * chunk );
344 :
345 : /* fd_eqvoc_proof_remove removes the proof entry associated with key. */
346 :
347 : void
348 : fd_eqvoc_proof_remove( fd_eqvoc_t * eqvoc, fd_slot_pubkey_t const * key );
349 :
350 : /* fd_eqvoc_proof_complete checks whether the proof has received all
351 : chunks ie. is complete. Returns 1 if so, 0 otherwise. */
352 :
353 : static inline int
354 0 : fd_eqvoc_proof_complete( fd_eqvoc_proof_t const * proof ) {
355 0 : for( uchar i = 0; i < proof->chunk_cnt; i++ ) {
356 0 : if( !fd_eqvoc_proof_set_test( proof->set, i ) ) return 0;
357 0 : }
358 0 : return 1;
359 0 : }
360 :
361 : /* fd_eqvoc_proof_verify verifies that the two shreds contained in
362 : `proof` do in fact equivocate.
363 :
364 : Returns: FD_EQVOC_VERIFY_FAILURE if they do not
365 : FD_EQVOC_VERIFY_SUCCESS_{REASON} if they do
366 : FD_EQVOC_VERIFY_ERR_{REASON} if the shreds were not valid inputs
367 :
368 : Two shreds equivocate if they satisfy any of the following:
369 :
370 : 1. They are in the same FEC set but have different signatures.
371 : 2. They are in the same FEC set and are both coding shreds, but have
372 : different coding metadata ie. code_cnt, data_cnt, first_code_idx.
373 : 3. They are in the same FEC set and are both data shreds. One shred
374 : is marked as the last data shred in the slot
375 : (FD_SHRED_DATA_FLAG_SLOT_COMPLETE), but the other shred has a
376 : higher data shred index.
377 : 4. They are in different FEC sets and the shred with a lower FEC set
378 : index is a coding shred, whereas the shred with the higher FEC set
379 : index is either a coding or data shred. The lower coding shred's
380 : `data_cnt` implies the lower FEC set intersects with the higher
381 : FEC set ie. the FEC sets are overlapping.
382 : 5. They are in different FEC sets and the shred with a lower FEC set
383 : index is a coding shred, and the FEC sets are adjacent ie. the
384 : last data shred index in the lower FEC set is one less than the
385 : first data shred index in the higher FEC set. The merkle root of
386 : the lower FEC set is different from the chained merkle root of the
387 : higher FEC set.
388 :
389 : Note: two shreds are in the same FEC set if they have the same slot
390 : and same FEC set index.
391 :
392 : To prevent false positives, this function also performs the following
393 : input validation on the shreds:
394 :
395 : 1. shred1 and shred2 are both the expected shred_version.
396 : 2. shred1 and shred2 are for the same slot.
397 : 3. shred1 and shred2 are either chained merkle or chained resigned
398 : merkle variants.
399 : 4. shred1 and shred2 contain valid signatures signed by the same
400 : producer pubkey.
401 :
402 : If any of the above input validation fail, this function returns
403 : FD_EQVOC_VERIFY_ERR_{REASON} for the appropriate reason. */
404 :
405 : int
406 : fd_eqvoc_proof_verify( fd_eqvoc_proof_t const * proof );
407 :
408 : /* fd_eqvoc_proof_shreds_verify is a lower-level API for
409 : fd_eqvoc_proof_verify. Refer above for documentation. */
410 :
411 : int
412 : fd_eqvoc_shreds_verify( fd_shred_t const * shred1, fd_shred_t const * shred2, fd_pubkey_t const * producer, void * bmtree_mem );
413 :
414 : /* fd_eqvoc_proof_shred1 returns a pointer to shred1 in `proof`. */
415 :
416 : static inline fd_shred_t *
417 0 : fd_eqvoc_proof_shred1( fd_eqvoc_proof_t * proof ) {
418 0 : return (fd_shred_t *)fd_type_pun_const( proof->shreds + sizeof(ulong) );
419 0 : }
420 :
421 : /* fd_eqvoc_proof_shred1_const returns a const pointer to shred1 in
422 : `proof`. */
423 :
424 : static inline fd_shred_t const *
425 0 : fd_eqvoc_proof_shred1_const( fd_eqvoc_proof_t const * proof ) {
426 0 : return (fd_shred_t const *)fd_type_pun_const( proof->shreds + sizeof(ulong) );
427 0 : }
428 :
429 : /* fd_eqvoc_proof_shred2 returns a pointer to shred2 in `proof`. */
430 :
431 : static inline fd_shred_t *
432 0 : fd_eqvoc_proof_shred2( fd_eqvoc_proof_t * proof ) {
433 0 : ulong shred1_sz = *(ulong *)fd_type_pun( proof->shreds );
434 0 : return (fd_shred_t *)fd_type_pun( proof->shreds + shred1_sz + 2*sizeof(ulong) );
435 0 : }
436 :
437 : /* fd_eqvoc_proof_shred2_const returns a const pointer to shred2 in `proof`. */
438 :
439 : static inline fd_shred_t const *
440 0 : fd_eqvoc_proof_shred2_const( fd_eqvoc_proof_t const * proof ) {
441 0 : ulong shred1_sz = *(ulong const *)fd_type_pun_const( proof->shreds );
442 0 : return (fd_shred_t const *)fd_type_pun_const( proof->shreds + shred1_sz + 2*sizeof(ulong) );
443 0 : }
444 :
445 : /* fd_eqvoc_verify verifies `slot` has FEC sets with merkle roots that
446 : correctly chain, including that the first FEC set in slot's merkle
447 : hash chains from the last FEC set in parent slot's merkle hash. */
448 :
449 : int
450 : fd_eqvoc_slot_verify( fd_eqvoc_t const * eqvoc, fd_blockstore_t * blockstore, ulong slot );
451 :
452 : /* fd_eqvoc_from_chunks reconstructs shred1_out and shred2_out from
453 : `chunks` which is an array of "duplicate shred" gossip msgs. Shred1
454 : and shred2 comprise a "duplicate shred proof", ie. proof of two
455 : shreds that conflict and therefore demonstrate the shreds' producer
456 : has equivocated.
457 :
458 : Assumes `chunks` is non-NULL and contains at least one valid array
459 : member chunks[0] to extract header information. Caller's
460 : responsibility to guarantee this. Also assumes the `chunk` field in
461 : `fd_gossip_duplicate_shred_t` is a pointer to valid memory and
462 : consistent with the metadata presented in the header of the first
463 : array member, eg. if the header says there are 4 chunks then this
464 : implementation assumes this is true. These assumptions should be
465 : already upheld by caller if using deserializers in `fd_types.h`.
466 : Behavior is undefined otherwise.
467 :
468 : Does additional sanity-check validation eg. checking chunk_len <=
469 : FD_EQVOC_PROOF_SZ.
470 :
471 : This function is expected to be deprecated once chunks are specified
472 : to be fixed-length in the gossip protocol. */
473 :
474 : void
475 : fd_eqvoc_proof_from_chunks( fd_gossip_duplicate_shred_t const * chunks,
476 : fd_eqvoc_proof_t * proof_out );
477 :
478 : /* fd_eqvoc_to_chunks constructs an array of DuplicateShred gossip msgs
479 : (`chunks_out`) from shred1 and shred2.
480 :
481 : Shred1 and shred2 are concatenated (the concatenation is implemented
482 : virtually) and then spliced into chunks of FD_EQVOC_PROOF_CHUNK_SZ
483 : size. These chunks are embedded in the body of each DuplicateShred
484 : msg, along with a common header across all msgs.
485 :
486 : Caller supplies `chunks_out`, which is an array that MUST contain
487 : `ceil(shred1_payload_sz + shred2_payload_sz /
488 : FD_EQVOC_PROOF_CHUNK_SZ)` elements. Each chunk in `chunks_out` MUST
489 : have a buffer of at least `chunk_len` size available in its `chunk`
490 : pointer field. Behavior is undefined otherwise.
491 :
492 : IMPORTANT SAFETY TIP! The lifetime of each chunk in `chunks_out`
493 : must be at least as long as the lifetime of the array of
494 : duplicate_shreds. Caller is responsible for ensuring this memory
495 : safety guarantee. */
496 :
497 : void
498 : fd_eqvoc_proof_to_chunks( fd_eqvoc_proof_t * proof, fd_gossip_duplicate_shred_t * chunks_out );
499 :
500 : #endif /* HEADER_fd_src_choreo_eqvoc_fd_eqvoc_h */
|