LCOV - code coverage report
Current view: top level - disco/stem - fd_stem.c (source / functions) Hit Total Coverage
Test: cov.lcov Lines: 0 340 0.0 %
Date: 2025-03-20 12:08:36 Functions: 0 180 0.0 %

          Line data    Source code
       1             : #include "fd_stem.h"
       2             : 
       3             : /* fd_stem provides services to multiplex multiple streams of input
       4             :    fragments and present them to a mix of reliable and unreliable
       5             :    consumers as though they were generated by multiple different
       6             :    multi-stream producers.  The code can be included to generate
       7             :    a definition of stem_run which can be called as a tile main run
       8             :    loop.
       9             : 
      10             :    The template supports various callback functions which can be
      11             :    defined like #define STEM_CALLBACK_BEFORE_FRAG before_frag to
      12             :    tune the behavior of the stem_run loop.  The callbacks are:
      13             : 
      14             :      DURING_HOUSEKEEPING
      15             :    Is called during the housekeeping routine, which happens infrequently
      16             :    on a schedule determined by the stem (based on the lazy parameter,
      17             :    see fd_tempo.h for more information).  It is appropriate to do
      18             :    slightly expensive things here that wouldn't be OK to do in the main
      19             :    loop, like updating sequence numbers that are shared with other tiles
      20             :    (e.g. synchronization information), or sending batched information
      21             :    somewhere.  The ctx is a user-provided context object from when the
      22             :    stem was initialized.
      23             : 
      24             :      METRICS_WRITE
      25             :    By convention, tiles may wish to accumulate high traffic metrics
      26             :    locally so they don't cause a lot of cache coherency traffic, and
      27             :    then periodically publish them to external observers.  This callback
      28             :    is here to support that use case.  It occurs infrequently during the
      29             :    housekeeping loop, and is called inside a compiler fence to ensure
      30             :    the writes do not get reordered, which may be important for observers
      31             :    or monitoring tools.  The ctx is a user-provided context object from
      32             :    when the stem tile was initialized.
      33             : 
      34             :      BEFORE_CREDIT
      35             :    Is called every iteration of the stem run loop, whether there is a
      36             :    new frag ready to receive or not.  This callback is also still
      37             :    invoked even if the stem is backpressured and cannot read any new
      38             :    fragments while waiting for downstream consumers to catch up.  This
      39             :    callback is useful for things that need to occur even if no new frags
      40             :    are being handled.  For example, servicing network connections could
      41             :    happen here.  The ctx is a user-provided context object from when the
      42             :    stem tile was initialized.  The stem is the stem which is invoking
      43             :    this callback. The stem should only be used for calling
      44             :    fd_stem_publish to publish a fragment to downstream consumers.
      45             : 
      46             :    The charge_busy argument is 0 by default, and should be set to 1 if
      47             :    the before_credit function is doing work that should be accounted for
      48             :    as part of the tiles busy indicator.
      49             : 
      50             :       AFTER_CREDIT
      51             :    Is called every iteration of the stem run loop, whether there is a
      52             :    new frag ready to receive or not, except in cases where the stem is
      53             :    backpressured by a downstream consumer and would not be able to
      54             :    publish.  The callback might be used for publishing new fragments to
      55             :    downstream consumers in the main loop which are not in response to an
      56             :    incoming fragment.  For example, code that collects incoming
      57             :    fragments over a period of 1 second and joins them together before
      58             :    publishing a large block fragment downstream, would publish the block
      59             :    here. The ctx is a user-provided context object from when the stem
      60             :    tile was initialized.  The stem is the stem which is invoking this
      61             :    callback. The stem should only be used for calling fd_stem_publish to
      62             :    publish a fragment to downstream consumers.
      63             : 
      64             :    The opt_poll_in argument determines if the stem should proceed with
      65             :    checking for new fragments to consumer, or should `continue` the main
      66             :    stem loop to do credit checking again.  This could be used if the
      67             :    after_credit function publishes, and the flow control needs to be
      68             :    checked again.  By default, opt_poll_in is true and the stem will
      69             :    poll for fragments right away without rerunning the loop or checking
      70             :    for credits.
      71             : 
      72             :    The charge_busy argument is 0 by default, and should be set to 1 if
      73             :    the after_credit function is doing work that should be accounted for
      74             :    as part of the tiles busy indicator.
      75             : 
      76             :       BEFORE_FRAG
      77             :    Is called immediately whenever a new fragment has been detected that
      78             :    was published by an upstream producer.  The signature and sequence
      79             :    number (sig and seq) provided as arguments are read atomically from
      80             :    shared memory, so must both match each other from the published
      81             :    fragment (aka. they will not be torn or partially overwritten).
      82             :    in_idx is an index in [0, num_ins) indicating which producer
      83             :    published the fragment. No fragment data has been read yet here, nor
      84             :    has other metadata, for example the size or timestamps of the
      85             :    fragment.  Mainly this callback is useful for deciding whether to
      86             :    filter the fragment based on its signature.  If the return value is
      87             :    non-zero, the frag will be skipped completely, no fragment data will
      88             :    be read, and the in will be advanced so that we now wait for the next
      89             :    fragment.  The ctx is a user-provided context object from when the
      90             :    stem tile was initialized.
      91             : 
      92             :       DURING_FRAG
      93             :    Is called after the stem has received a new frag from an in, but
      94             :    before the stem has checked that it was overrun.  This callback is
      95             :    not invoked if the stem is backpressured, as it would not try and
      96             :    read a frag from an in in the first place (instead, leaving it on the
      97             :    in mcache to backpressure the upstream producer).  in_idx will be the
      98             :    index of the in that the frag was received from. If the producer of
      99             :    the frags is respecting flow control, it is safe to read frag data in
     100             :    any of the callbacks, but it is suggested to copy or read frag data
     101             :    within this callback, as if the producer does not respect flow
     102             :    control, the frag may be torn or corrupt due to an overrun by the
     103             :    reader.  If the frag being read from has been overwritten while this
     104             :    callback is running, the frag will be ignored and the stem will not
     105             :    call the after_frag function. Instead it will recover from the
     106             :    overrun and continue with new frags.  This function cannot fail.  The
     107             :    ctx is a user-provided context object from when the stem tile was
     108             :    initialized. seq, sig, chunk, and sz are the respective fields from
     109             :    the mcache fragment that was received.  If the producer is not
     110             :    respecting flow control, these may be corrupt or torn and should not
     111             :    be trusted, except for seq which is read atomically.
     112             : 
     113             :       AFTER_FRAG
     114             :    Is called immediately after the DURING_FRAG, along with an additional
     115             :    check that the reader was not overrun while handling the frag.  If
     116             :    the reader was overrun, the frag is abandoned and this function is
     117             :    not called.  This callback is not invoked if the stem is
     118             :    backpressured, as it would not read a frag in the first place.
     119             :    in_idx will be the index of the in that the frag was received from.
     120             :    You should not read the frag data directly here, as it might still
     121             :    get overrun, instead it should be copied out of the frag during the
     122             :    read callback if needed later. This function cannot fail. The ctx is
     123             :    a user-provided context object from when the stem tile was
     124             :    initialized.  stem should only be used for calling fd_stem_publish to
     125             :    publish a fragment to downstream consumers.  seq is the sequence
     126             :    number of the fragment that was read from the input mcache. sig,
     127             :    chunk, sz, tsorig, and tspub are the respective fields from the
     128             :    mcache fragment that was received.  If the producer is not respecting
     129             :    flow control, these may be corrupt or torn and should not be trusted.
     130             : 
     131             :       AFTER_POLL_OVERRUN
     132             :    Is called when an overrun is detected while polling for new frags.
     133             :    This callback is not called when an overrun is detected in
     134             :    during_frag. */
     135             : 
     136             : #if !FD_HAS_SSE
     137             : #error "fd_stem requires SSE"
     138             : #endif
     139             : 
     140             : #if !FD_HAS_ALLOCA
     141             : #error "fd_stem requires alloca"
     142             : #endif
     143             : 
     144             : #include "../topo/fd_topo.h"
     145             : #include "../metrics/fd_metrics.h"
     146             : #include "../../tango/fd_tango.h"
     147             : 
     148             : #ifndef STEM_NAME
     149             : #define STEM_NAME stem
     150             : #endif
     151           0 : #define STEM_(n) FD_EXPAND_THEN_CONCAT3(STEM_NAME,_,n)
     152             : 
     153             : #ifndef STEM_BURST
     154             : #error "STEM_BURST must be defined"
     155             : #endif
     156             : 
     157             : #ifndef STEM_CALLBACK_CONTEXT_TYPE
     158             : #error "STEM_CALLBACK_CONTEXT_TYPE must be defined"
     159             : #endif
     160             : 
     161             : #ifndef STEM_LAZY
     162           0 : #define STEM_LAZY (0L)
     163             : #endif
     164             : 
     165             : static inline void
     166           0 : STEM_(in_update)( fd_stem_tile_in_t * in ) {
     167           0 :   fd_fseq_update( in->fseq, in->seq );
     168             : 
     169           0 :   volatile ulong * metrics = fd_metrics_link_in( fd_metrics_base_tl, in->idx );
     170             : 
     171           0 :   uint *  accum = in->accum;
     172           0 :   ulong a0 = (ulong)accum[0]; ulong a1 = (ulong)accum[1]; ulong a2 = (ulong)accum[2];
     173           0 :   ulong a3 = (ulong)accum[3]; ulong a4 = (ulong)accum[4]; ulong a5 = (ulong)accum[5];
     174           0 :   FD_COMPILER_MFENCE();
     175           0 :   metrics[0] += a0;           metrics[1] += a1;           metrics[2] += a2;
     176           0 :   metrics[3] += a3;           metrics[4] += a4;           metrics[5] += a5;
     177           0 :   FD_COMPILER_MFENCE();
     178           0 :   accum[0] = 0U;              accum[1] = 0U;              accum[2] = 0U;
     179           0 :   accum[3] = 0U;              accum[4] = 0U;              accum[5] = 0U;
     180           0 : }
     181             : 
     182             : FD_FN_PURE static inline ulong
     183           0 : STEM_(scratch_align)( void ) {
     184           0 :   return FD_STEM_SCRATCH_ALIGN;
     185           0 : }
     186             : 
     187             : FD_FN_PURE static inline ulong
     188             : STEM_(scratch_footprint)( ulong in_cnt,
     189             :                           ulong out_cnt,
     190           0 :                           ulong cons_cnt ) {
     191           0 :   ulong l = FD_LAYOUT_INIT;
     192           0 :   l = FD_LAYOUT_APPEND( l, alignof(fd_stem_tile_in_t), in_cnt*sizeof(fd_stem_tile_in_t)     );  /* in */
     193           0 :   l = FD_LAYOUT_APPEND( l, alignof(ulong),             out_cnt*sizeof(ulong)                ); /* out_depth */
     194           0 :   l = FD_LAYOUT_APPEND( l, alignof(ulong),             out_cnt*sizeof(ulong)                ); /* out_seq */
     195           0 :   l = FD_LAYOUT_APPEND( l, alignof(ulong const *),     cons_cnt*sizeof(ulong const *)       ); /* cons_fseq */
     196           0 :   l = FD_LAYOUT_APPEND( l, alignof(ulong *),           cons_cnt*sizeof(ulong *)             ); /* cons_slow */
     197           0 :   l = FD_LAYOUT_APPEND( l, alignof(ulong),             cons_cnt*sizeof(ulong)               ); /* cons_out */
     198           0 :   l = FD_LAYOUT_APPEND( l, alignof(ulong),             cons_cnt*sizeof(ulong)               ); /* cons_seq */
     199           0 :   const ulong event_cnt = in_cnt + 1UL + cons_cnt;
     200           0 :   l = FD_LAYOUT_APPEND( l, alignof(ushort),            event_cnt*sizeof(ushort)             ); /* event_map */
     201           0 :   return FD_LAYOUT_FINI( l, STEM_(scratch_align)() );
     202           0 : }
     203             : 
     204             : static inline void
     205             : STEM_(run1)( ulong                        in_cnt,
     206             :              fd_frag_meta_t const **      in_mcache,
     207             :              ulong **                     in_fseq,
     208             :              ulong                        out_cnt,
     209             :              fd_frag_meta_t **            out_mcache,
     210             :              ulong                        cons_cnt,
     211             :              ulong *                      _cons_out,
     212             :              ulong **                     _cons_fseq,
     213             :              ulong                        burst,
     214             :              long                         lazy,
     215             :              fd_rng_t *                   rng,
     216             :              void *                       scratch,
     217           0 :              STEM_CALLBACK_CONTEXT_TYPE * ctx ) {
     218             :   /* in frag stream state */
     219           0 :   ulong               in_seq; /* current position in input poll sequence, in [0,in_cnt) */
     220           0 :   fd_stem_tile_in_t * in;     /* in[in_seq] for in_seq in [0,in_cnt) has information about input fragment stream currently at
     221             :                                  position in_seq in the in_idx polling sequence.  The ordering of this array is continuously
     222             :                                  shuffled to avoid lighthousing effects in the output fragment stream at extreme fan-in and load */
     223             : 
     224             :   /* out frag stream state */
     225           0 :   ulong *        out_depth; /* ==fd_mcache_depth( out_mcache[out_idx] ) for out_idx in [0, out_cnt) */
     226           0 :   ulong *        out_seq;  /* next mux frag sequence number to publish for out_idx in [0, out_cnt) ]*/
     227             : 
     228             :   /* out flow control state */
     229           0 :   ulong          cr_avail;   /* number of flow control credits available to publish downstream, in [0,cr_max] */
     230           0 :   ulong const ** cons_fseq;  /* cons_fseq[cons_idx] for cons_idx in [0,cons_cnt) is where to receive fctl credits from consumers */
     231           0 :   ulong **       cons_slow;  /* cons_slow[cons_idx] for cons_idx in [0,cons_cnt) is where to accumulate slow events */
     232           0 :   ulong *        cons_out;   /* cons_out[cons_idx] for cons_idx in [0,cons_ct) is which out the consumer consumes from ]*/
     233           0 :   ulong *        cons_seq;   /* cons_seq [cons_idx] is the most recent observation of cons_fseq[cons_idx] */
     234             : 
     235             :   /* housekeeping state */
     236           0 :   ulong    event_cnt; /* ==in_cnt+cons_cnt+1, total number of housekeeping events */
     237           0 :   ulong    event_seq; /* current position in housekeeping event sequence, in [0,event_cnt) */
     238           0 :   ushort * event_map; /* current mapping of event_seq to event idx, event_map[ event_seq ] is next event to process */
     239           0 :   ulong    async_min; /* minimum number of ticks between processing a housekeeping event, positive integer power of 2 */
     240             : 
     241             :   /* performance metrics */
     242           0 :   ulong metric_in_backp;  /* is the run loop currently backpressured by one or more of the outs, in [0,1] */
     243           0 :   ulong metric_backp_cnt; /* Accumulates number of transitions of tile to backpressured between housekeeping events */
     244             : 
     245           0 :   ulong metric_regime_ticks[9];    /* How many ticks the tile has spent in each regime */
     246             : 
     247           0 :   if( FD_UNLIKELY( !scratch ) ) FD_LOG_ERR(( "NULL scratch" ));
     248           0 :   if( FD_UNLIKELY( !fd_ulong_is_aligned( (ulong)scratch, STEM_(scratch_align)() ) ) ) FD_LOG_ERR(( "misaligned scratch" ));
     249             : 
     250             :   /* in_backp==1, backp_cnt==0 indicates waiting for initial credits,
     251             :       cleared during first housekeeping if credits available */
     252           0 :   metric_in_backp  = 1UL;
     253           0 :   metric_backp_cnt = 0UL;
     254           0 :   memset( metric_regime_ticks, 0, sizeof( metric_regime_ticks ) );
     255             : 
     256             :   /* in frag stream init */
     257             : 
     258           0 :   in_seq = 0UL; /* First in to poll */
     259             : 
     260           0 :   FD_SCRATCH_ALLOC_INIT( l, scratch );
     261           0 :   in = (fd_stem_tile_in_t *)FD_SCRATCH_ALLOC_APPEND( l, alignof(fd_stem_tile_in_t), in_cnt*sizeof(fd_stem_tile_in_t) );
     262             : 
     263           0 :   ulong min_in_depth = (ulong)LONG_MAX;
     264             : 
     265           0 :   if( FD_UNLIKELY( !!in_cnt && !in_mcache ) ) FD_LOG_ERR(( "NULL in_mcache" ));
     266           0 :   if( FD_UNLIKELY( !!in_cnt && !in_fseq   ) ) FD_LOG_ERR(( "NULL in_fseq"   ));
     267           0 :   if( FD_UNLIKELY( in_cnt > UINT_MAX ) )      FD_LOG_ERR(( "in_cnt too large" ));
     268           0 :   for( ulong in_idx=0UL; in_idx<in_cnt; in_idx++ ) {
     269             : 
     270           0 :     if( FD_UNLIKELY( !in_mcache[ in_idx ] ) ) FD_LOG_ERR(( "NULL in_mcache[%lu]", in_idx ));
     271           0 :     if( FD_UNLIKELY( !in_fseq  [ in_idx ] ) ) FD_LOG_ERR(( "NULL in_fseq[%lu]",   in_idx ));
     272             : 
     273           0 :     fd_stem_tile_in_t * this_in = &in[ in_idx ];
     274             : 
     275           0 :     this_in->mcache = in_mcache[ in_idx ];
     276           0 :     this_in->fseq   = in_fseq  [ in_idx ];
     277             : 
     278           0 :     ulong depth    = fd_mcache_depth( this_in->mcache ); min_in_depth = fd_ulong_min( min_in_depth, depth );
     279           0 :     if( FD_UNLIKELY( depth > UINT_MAX ) ) FD_LOG_ERR(( "in_mcache[%lu] too deep", in_idx ));
     280           0 :     this_in->depth = (uint)depth;
     281           0 :     this_in->idx   = (uint)in_idx;
     282           0 :     this_in->seq   = 0UL;
     283           0 :     this_in->mline = this_in->mcache + fd_mcache_line_idx( this_in->seq, this_in->depth );
     284             : 
     285           0 :     this_in->accum[0] = 0U; this_in->accum[1] = 0U; this_in->accum[2] = 0U;
     286           0 :     this_in->accum[3] = 0U; this_in->accum[4] = 0U; this_in->accum[5] = 0U;
     287           0 :   }
     288             : 
     289             :   /* out frag stream init */
     290             : 
     291           0 :   cr_avail = 0UL;
     292             : 
     293           0 :   out_depth  = (ulong *)FD_SCRATCH_ALLOC_APPEND( l, alignof(ulong), out_cnt*sizeof(ulong) );
     294           0 :   out_seq    = (ulong *)FD_SCRATCH_ALLOC_APPEND( l, alignof(ulong), out_cnt*sizeof(ulong) );
     295             : 
     296           0 :   ulong cr_max = fd_ulong_if( !out_cnt, 128UL, ULONG_MAX );
     297             : 
     298           0 :   for( ulong out_idx=0UL; out_idx<out_cnt; out_idx++ ) {
     299             : 
     300           0 :     if( FD_UNLIKELY( !out_mcache[ out_idx ] ) ) FD_LOG_ERR(( "NULL out_mcache[%lu]", out_idx ));
     301             : 
     302           0 :     out_depth[ out_idx ] = fd_mcache_depth( out_mcache[ out_idx ] );
     303           0 :     out_seq[ out_idx ] = 0UL;
     304             : 
     305           0 :     cr_max = fd_ulong_min( cr_max, out_depth[ out_idx ] );
     306           0 :   }
     307             : 
     308           0 :   cons_fseq = (ulong const **)FD_SCRATCH_ALLOC_APPEND( l, alignof(ulong const *), cons_cnt*sizeof(ulong const *) );
     309           0 :   cons_slow = (ulong **)      FD_SCRATCH_ALLOC_APPEND( l, alignof(ulong *),       cons_cnt*sizeof(ulong *)       );
     310           0 :   cons_out  = (ulong *)       FD_SCRATCH_ALLOC_APPEND( l, alignof(ulong),         cons_cnt*sizeof(ulong)         );
     311           0 :   cons_seq  = (ulong *)       FD_SCRATCH_ALLOC_APPEND( l, alignof(ulong),         cons_cnt*sizeof(ulong)         );
     312             : 
     313           0 :   if( FD_UNLIKELY( !!cons_cnt && !_cons_fseq ) ) FD_LOG_ERR(( "NULL cons_fseq" ));
     314           0 :   for( ulong cons_idx=0UL; cons_idx<cons_cnt; cons_idx++ ) {
     315           0 :     if( FD_UNLIKELY( !_cons_fseq[ cons_idx ] ) ) FD_LOG_ERR(( "NULL cons_fseq[%lu]", cons_idx ));
     316           0 :     cons_fseq[ cons_idx ] = _cons_fseq[ cons_idx ];
     317           0 :     cons_out [ cons_idx ] = _cons_out [ cons_idx ];
     318           0 :     cons_slow[ cons_idx ] = (ulong*)(fd_metrics_link_out( fd_metrics_base_tl, cons_idx ) + FD_METRICS_COUNTER_LINK_SLOW_COUNT_OFF);
     319           0 :     cons_seq [ cons_idx ] = fd_fseq_query( _cons_fseq[ cons_idx ] );
     320           0 :   }
     321             : 
     322             :   /* housekeeping init */
     323             : 
     324           0 :   if( lazy<=0L ) lazy = fd_tempo_lazy_default( cr_max );
     325           0 :   FD_LOG_INFO(( "Configuring housekeeping (lazy %li ns)", lazy ));
     326             : 
     327             :   /* Initialize the initial event sequence to immediately update
     328             :      cr_avail on the first run loop iteration and then update all the
     329             :      ins accordingly. */
     330             : 
     331           0 :   event_cnt = in_cnt + 1UL + cons_cnt;
     332           0 :   event_map = (ushort *)FD_SCRATCH_ALLOC_APPEND( l, alignof(ushort), event_cnt*sizeof(ushort) );
     333           0 :   event_seq = 0UL;                                         event_map[ event_seq++ ] = (ushort)cons_cnt;
     334           0 :   for( ulong   in_idx=0UL;   in_idx< in_cnt;  in_idx++   ) event_map[ event_seq++ ] = (ushort)(in_idx+cons_cnt+1UL);
     335           0 :   for( ulong cons_idx=0UL; cons_idx<cons_cnt; cons_idx++ ) event_map[ event_seq++ ] = (ushort)cons_idx;
     336           0 :   event_seq = 0UL;
     337             : 
     338           0 :   async_min = fd_tempo_async_min( lazy, event_cnt, (float)fd_tempo_tick_per_ns( NULL ) );
     339           0 :   if( FD_UNLIKELY( !async_min ) ) FD_LOG_ERR(( "bad lazy %lu %lu", (ulong)lazy, event_cnt ));
     340             : 
     341           0 :   FD_LOG_INFO(( "Running stem" ));
     342           0 :   FD_MGAUGE_SET( TILE, STATUS, 1UL );
     343           0 :   long then = fd_tickcount();
     344           0 :   long now  = then;
     345           0 :   for(;;) {
     346             : 
     347             :     /* Do housekeeping at a low rate in the background */
     348             : 
     349           0 :     ulong housekeeping_ticks = 0UL;
     350           0 :     if( FD_UNLIKELY( (now-then)>=0L ) ) {
     351           0 :       ulong event_idx = (ulong)event_map[ event_seq ];
     352             : 
     353             :       /* Do the next async event.  event_idx:
     354             :             <out_cnt - receive credits from out event_idx
     355             :            ==out_cnt - housekeeping
     356             :             >out_cnt - send credits to in event_idx - out_cnt - 1.
     357             :          Branch hints and order are optimized for the case:
     358             :            out_cnt >~ in_cnt >~ 1. */
     359             : 
     360           0 :       if( FD_LIKELY( event_idx<cons_cnt ) ) { /* cons fctl for cons cons_idx */
     361           0 :         ulong cons_idx = event_idx;
     362             : 
     363             :         /* Receive flow control credits from this out. */
     364           0 :         cons_seq[ cons_idx ] = fd_fseq_query( cons_fseq[ cons_idx ] );
     365             : 
     366           0 :       } else if( FD_LIKELY( event_idx>cons_cnt ) ) { /* in fctl for in in_idx */
     367           0 :         ulong in_idx = event_idx - cons_cnt - 1UL;
     368             : 
     369             :         /* Send flow control credits and drain flow control diagnostics
     370             :            for in_idx. */
     371             : 
     372           0 :         STEM_(in_update)( &in[ in_idx ] );
     373             : 
     374           0 :       } else { /* event_idx==cons_cnt, housekeeping event */
     375             : 
     376             :         /* Update metrics counters to external viewers */
     377           0 :         FD_COMPILER_MFENCE();
     378           0 :         FD_MGAUGE_SET( TILE, HEARTBEAT,                 (ulong)now );
     379           0 :         FD_MGAUGE_SET( TILE, IN_BACKPRESSURE,           metric_in_backp );
     380           0 :         FD_MCNT_INC  ( TILE, BACKPRESSURE_COUNT,        metric_backp_cnt );
     381           0 :         FD_MCNT_ENUM_COPY( TILE, REGIME_DURATION_NANOS, metric_regime_ticks );
     382             : #ifdef STEM_CALLBACK_METRICS_WRITE
     383           0 :         STEM_CALLBACK_METRICS_WRITE( ctx );
     384             : #endif
     385           0 :         FD_COMPILER_MFENCE();
     386           0 :         metric_backp_cnt = 0UL;
     387             : 
     388             :         /* Receive flow control credits */
     389           0 :         if( FD_LIKELY( cr_avail<cr_max ) ) {
     390           0 :           ulong slowest_cons = ULONG_MAX;
     391           0 :           cr_avail = cr_max;
     392           0 :           for( ulong cons_idx=0UL; cons_idx<cons_cnt; cons_idx++ ) {
     393           0 :             ulong cons_cr_avail = (ulong)fd_long_max( (long)cr_max-fd_long_max( fd_seq_diff( out_seq[ cons_out[ cons_idx ] ], cons_seq[ cons_idx ] ), 0L ), 0L );
     394           0 :             slowest_cons = fd_ulong_if( cons_cr_avail<cr_avail, cons_idx, slowest_cons );
     395           0 :             cr_avail     = fd_ulong_min( cons_cr_avail, cr_avail );
     396           0 :           }
     397             : 
     398             :           /* See notes above about use of quasi-atomic diagnostic accum */
     399           0 :           if( FD_LIKELY( slowest_cons!=ULONG_MAX ) ) {
     400           0 :             FD_COMPILER_MFENCE();
     401           0 :             (*cons_slow[ slowest_cons ]) += metric_in_backp;
     402           0 :             FD_COMPILER_MFENCE();
     403           0 :           }
     404           0 :         }
     405             : 
     406             : #ifdef STEM_CALLBACK_DURING_HOUSEKEEPING
     407           0 :         STEM_CALLBACK_DURING_HOUSEKEEPING( ctx );
     408             : #else
     409             :         (void)ctx;
     410             : #endif
     411           0 :       }
     412             : 
     413             :       /* Select which event to do next (randomized round robin) and
     414             :          reload the housekeeping timer. */
     415             : 
     416           0 :       event_seq++;
     417           0 :       if( FD_UNLIKELY( event_seq>=event_cnt ) ) {
     418           0 :         event_seq = 0UL;
     419             : 
     420             :         /* Randomize the order of event processing for the next event
     421             :            event_cnt events to avoid lighthousing effects causing input
     422             :            credit starvation at extreme fan in/fan out, extreme in load
     423             :            and high credit return laziness. */
     424             : 
     425           0 :         ulong  swap_idx = (ulong)fd_rng_uint_roll( rng, (uint)event_cnt );
     426           0 :         ushort map_tmp        = event_map[ swap_idx ];
     427           0 :         event_map[ swap_idx ] = event_map[ 0        ];
     428           0 :         event_map[ 0        ] = map_tmp;
     429             : 
     430             :         /* We also do the same with the ins to prevent there being a
     431             :            correlated order frag origins from different inputs
     432             :            downstream at extreme fan in and extreme in load. */
     433             : 
     434           0 :         if( FD_LIKELY( in_cnt>1UL ) ) {
     435           0 :           swap_idx = (ulong)fd_rng_uint_roll( rng, (uint)in_cnt );
     436           0 :           fd_stem_tile_in_t in_tmp;
     437           0 :           in_tmp         = in[ swap_idx ];
     438           0 :           in[ swap_idx ] = in[ 0        ];
     439           0 :           in[ 0        ] = in_tmp;
     440           0 :         }
     441           0 :       }
     442             : 
     443             :       /* Reload housekeeping timer */
     444           0 :       then = now + (long)fd_tempo_async_reload( rng, async_min );
     445           0 :       long next = fd_tickcount();
     446           0 :       housekeeping_ticks = (ulong)(next - now);
     447           0 :       now = next;
     448           0 :     }
     449             : 
     450             : #if defined(STEM_CALLBACK_BEFORE_CREDIT) || defined(STEM_CALLBACK_AFTER_CREDIT) || defined(STEM_CALLBACK_AFTER_FRAG)
     451             :     fd_stem_context_t stem = {
     452             :       .mcaches             = out_mcache,
     453             :       .depths              = out_depth,
     454             :       .seqs                = out_seq,
     455             : 
     456             :       .cr_avail            = &cr_avail,
     457             :       .cr_decrement_amount = fd_ulong_if( out_cnt>0UL, 1UL, 0UL ),
     458             :     };
     459             : #endif
     460             : 
     461             : #ifdef STEM_CALLBACK_BEFORE_CREDIT
     462             :     int charge_busy_before = 0;
     463           0 :     STEM_CALLBACK_BEFORE_CREDIT( ctx, &stem, &charge_busy_before );
     464             : #endif
     465             : 
     466             :   /* Check if we are backpressured.  If so, count any transition into
     467             :      a backpressured regime and spin to wait for flow control credits
     468             :      to return.  We don't do a fully atomic update here as it is only
     469             :      diagnostic and it will still be correct in the usual case where
     470             :      individual diagnostic counters aren't used by writers in
     471             :      different threads of execution.  We only count the transition
     472             :      from not backpressured to backpressured. */
     473             : 
     474           0 :     if( FD_UNLIKELY( cr_avail<burst ) ) {
     475           0 :       metric_backp_cnt += (ulong)!metric_in_backp;
     476           0 :       metric_in_backp   = 1UL;
     477           0 :       FD_SPIN_PAUSE();
     478           0 :       metric_regime_ticks[2] += housekeeping_ticks;
     479           0 :       long next = fd_tickcount();
     480           0 :       metric_regime_ticks[5] += (ulong)(next - now);
     481           0 :       now = next;
     482           0 :       continue;
     483           0 :     }
     484           0 :     metric_in_backp = 0UL;
     485             : 
     486             : #ifdef STEM_CALLBACK_AFTER_CREDIT
     487             :     int poll_in = 1;
     488             :     int charge_busy_after = 0;
     489           0 :     STEM_CALLBACK_AFTER_CREDIT( ctx, &stem, &poll_in, &charge_busy_after );
     490           0 :     if( FD_UNLIKELY( !poll_in ) ) {
     491           0 :       metric_regime_ticks[1] += housekeeping_ticks;
     492           0 :       long next = fd_tickcount();
     493           0 :       metric_regime_ticks[4] += (ulong)(next - now);
     494           0 :       now = next;
     495           0 :       continue;
     496           0 :     }
     497           0 : #endif
     498             : 
     499             :     /* Select which in to poll next (randomized round robin) */
     500             : 
     501           0 :     if( FD_UNLIKELY( !in_cnt ) ) {
     502           0 :       metric_regime_ticks[0] += housekeeping_ticks;
     503           0 :       long next = fd_tickcount();
     504           0 :       metric_regime_ticks[3] += (ulong)(next - now);
     505           0 :       now = next;
     506           0 :       continue;
     507           0 :     }
     508             : 
     509           0 :     ulong prefrag_ticks = 0UL;
     510             : #if defined(STEM_CALLBACK_BEFORE_CREDIT) && defined(STEM_CALLBACK_AFTER_CREDIT)
     511           0 :     if( FD_LIKELY( charge_busy_before || charge_busy_after ) ) {
     512             : #elif defined(STEM_CALLBACK_BEFORE_CREDIT)
     513           0 :     if( FD_LIKELY( charge_busy_before ) ) {
     514             : #elif defined(STEM_CALLBACK_AFTER_CREDIT)
     515           0 :     if( FD_LIKELY( charge_busy_after ) ) {
     516           0 : #endif
     517             : 
     518             : #if defined(STEM_CALLBACK_BEFORE_CREDIT) || defined(STEM_CALLBACK_AFTER_CREDIT)
     519           0 :       long prefrag_next = fd_tickcount();
     520           0 :       prefrag_ticks = (ulong)(prefrag_next - now);
     521           0 :       now = prefrag_next;
     522           0 :     }
     523             : #endif
     524             : 
     525           0 :     fd_stem_tile_in_t * this_in = &in[ in_seq ];
     526           0 :     in_seq++;
     527           0 :     if( in_seq>=in_cnt ) in_seq = 0UL; /* cmov */
     528             : 
     529             :     /* Check if this in has any new fragments to mux */
     530             : 
     531           0 :     ulong                  this_in_seq   = this_in->seq;
     532           0 :     fd_frag_meta_t const * this_in_mline = this_in->mline; /* Already at appropriate line for this_in_seq */
     533             : 
     534           0 :     __m128i seq_sig = fd_frag_meta_seq_sig_query( this_in_mline );
     535           0 :   #if FD_USING_CLANG
     536             :       /* TODO: Clang optimizes extremely aggressively which breaks the
     537             :          atomicity expected by seq_sig_query.  In particular, it replaces
     538             :          the sequence query with a second load (immediately following
     539             :          vector load).  The signature query a few lines down is still an
     540             :          extract from the vector which then means that effectively the
     541             :          signature is loaded before the sequence number.
     542             :          Adding this clobbers of the vector prevents this optimization by
     543             :          forcing the seq query to be an extract, but we probably want a
     544             :          better long term solution. */
     545           0 :       __asm__( "" : "+x"(seq_sig) );
     546           0 :   #endif
     547           0 :     ulong seq_found = fd_frag_meta_sse0_seq( seq_sig );
     548             : 
     549           0 :     long diff = fd_seq_diff( this_in_seq, seq_found );
     550           0 :     if( FD_UNLIKELY( diff ) ) { /* Caught up or overrun, optimize for new frag case */
     551           0 :       ulong * housekeeping_regime = &metric_regime_ticks[0];
     552           0 :       ulong * prefrag_regime = &metric_regime_ticks[3];
     553           0 :       ulong * finish_regime = &metric_regime_ticks[6];
     554           0 :       if( FD_UNLIKELY( diff<0L ) ) { /* Overrun (impossible if in is honoring our flow control) */
     555           0 :         this_in->seq = seq_found; /* Resume from here (probably reasonably current, could query in mcache sync directly instead) */
     556           0 :         housekeeping_regime = &metric_regime_ticks[1];
     557           0 :         prefrag_regime = &metric_regime_ticks[4];
     558           0 :         finish_regime = &metric_regime_ticks[7];
     559           0 :         this_in->accum[ FD_METRICS_COUNTER_LINK_OVERRUN_POLLING_COUNT_OFF ]++;
     560           0 :         this_in->accum[ FD_METRICS_COUNTER_LINK_OVERRUN_POLLING_FRAG_COUNT_OFF ] += (uint)(-diff);
     561             : 
     562             : #ifdef STEM_CALLBACK_AFTER_POLL_OVERRUN
     563           0 :         STEM_CALLBACK_AFTER_POLL_OVERRUN( ctx );
     564             : #endif
     565           0 :       }
     566             : 
     567             :       /* Don't bother with spin as polling multiple locations */
     568           0 :       *housekeeping_regime += housekeeping_ticks;
     569           0 :       *prefrag_regime += prefrag_ticks;
     570           0 :       long next = fd_tickcount();
     571           0 :       *finish_regime += (ulong)(next - now);
     572           0 :       now = next;
     573           0 :       continue;
     574           0 :     }
     575             : 
     576           0 :     ulong sig = fd_frag_meta_sse0_sig( seq_sig ); (void)sig;
     577             : #ifdef STEM_CALLBACK_BEFORE_FRAG
     578           0 :     int filter = STEM_CALLBACK_BEFORE_FRAG( ctx, (ulong)this_in->idx, seq_found, sig );
     579           0 :     if( FD_UNLIKELY( filter<0 ) ) {
     580           0 :       metric_regime_ticks[1] += housekeeping_ticks;
     581           0 :       metric_regime_ticks[4] += prefrag_ticks;
     582           0 :       long next = fd_tickcount();
     583           0 :       metric_regime_ticks[7] += (ulong)(next - now);
     584           0 :       now = next;
     585           0 :       continue;
     586           0 :     } else if( FD_UNLIKELY( filter>0 ) ) {
     587           0 :       this_in->accum[ FD_METRICS_COUNTER_LINK_FILTERED_COUNT_OFF ]++;
     588           0 :       this_in->accum[ FD_METRICS_COUNTER_LINK_FILTERED_SIZE_BYTES_OFF ] += (uint)this_in_mline->sz; /* TODO: This might be overrun ... ? Not loaded atomically */
     589             : 
     590             :       this_in_seq    = fd_seq_inc( this_in_seq, 1UL );
     591             :       this_in->seq   = this_in_seq;
     592             :       this_in->mline = this_in->mcache + fd_mcache_line_idx( this_in_seq, this_in->depth );
     593             : 
     594           0 :       metric_regime_ticks[1] += housekeeping_ticks;
     595           0 :       metric_regime_ticks[4] += prefrag_ticks;
     596           0 :       long next = fd_tickcount();
     597           0 :       metric_regime_ticks[7] += (ulong)(next - now);
     598           0 :       now = next;
     599           0 :       continue;
     600           0 :     }
     601           0 : #endif
     602             : 
     603             :     /* We have a new fragment to mux.  Try to load it.  This attempt
     604             :        should always be successful if in producers are honoring our flow
     605             :        control.  Since we can cheaply detect if there are
     606             :        misconfigurations (should be an L1 cache hit / predictable branch
     607             :        in the properly configured case), we do so anyway.  Note that if
     608             :        we are on a platform where AVX is atomic, this could be replaced
     609             :        by a flat AVX load of the metadata and an extraction of the found
     610             :        sequence number for higher performance. */
     611           0 :     FD_COMPILER_MFENCE();
     612           0 :     ulong chunk    = (ulong)this_in_mline->chunk;  (void)chunk;
     613           0 :     ulong sz       = (ulong)this_in_mline->sz;     (void)sz;
     614           0 :     ulong ctl      = (ulong)this_in_mline->ctl;    (void)ctl;
     615           0 :     ulong tsorig   = (ulong)this_in_mline->tsorig; (void)tsorig;
     616           0 :     ulong tspub    = (ulong)this_in_mline->tspub;  (void)tspub;
     617             : 
     618             : #ifdef STEM_CALLBACK_DURING_FRAG
     619           0 :     STEM_CALLBACK_DURING_FRAG( ctx, (ulong)this_in->idx, seq_found, sig, chunk, sz, ctl );
     620             : #endif
     621             : 
     622           0 :     FD_COMPILER_MFENCE();
     623           0 :     ulong seq_test =        this_in_mline->seq;
     624           0 :     FD_COMPILER_MFENCE();
     625             : 
     626           0 :     if( FD_UNLIKELY( fd_seq_ne( seq_test, seq_found ) ) ) { /* Overrun while reading (impossible if this_in honoring our fctl) */
     627           0 :       this_in->seq = seq_test; /* Resume from here (probably reasonably current, could query in mcache sync instead) */
     628           0 :       fd_metrics_link_in( fd_metrics_base_tl, this_in->idx )[ FD_METRICS_COUNTER_LINK_OVERRUN_READING_COUNT_OFF ]++; /* No local accum since extremely rare, faster to use smaller cache line */
     629           0 :       fd_metrics_link_in( fd_metrics_base_tl, this_in->idx )[ FD_METRICS_COUNTER_LINK_OVERRUN_READING_FRAG_COUNT_OFF ] += (uint)fd_seq_diff( seq_test, seq_found ); /* No local accum since extremely rare, faster to use smaller cache line */
     630             :       /* Don't bother with spin as polling multiple locations */
     631           0 :       metric_regime_ticks[1] += housekeeping_ticks;
     632           0 :       metric_regime_ticks[4] += prefrag_ticks;
     633           0 :       long next = fd_tickcount();
     634           0 :       metric_regime_ticks[7] += (ulong)(next - now);
     635           0 :       now = next;
     636           0 :       continue;
     637           0 :     }
     638             : 
     639             : #ifdef STEM_CALLBACK_AFTER_FRAG
     640           0 :     STEM_CALLBACK_AFTER_FRAG( ctx, (ulong)this_in->idx, seq_found, sig, sz, tsorig, tspub, &stem );
     641           0 : #endif
     642             : 
     643             :     /* Windup for the next in poll and accumulate diagnostics */
     644             : 
     645           0 :     this_in_seq    = fd_seq_inc( this_in_seq, 1UL );
     646           0 :     this_in->seq   = this_in_seq;
     647           0 :     this_in->mline = this_in->mcache + fd_mcache_line_idx( this_in_seq, this_in->depth );
     648             : 
     649           0 :     this_in->accum[ FD_METRICS_COUNTER_LINK_CONSUMED_COUNT_OFF ]++;
     650           0 :     this_in->accum[ FD_METRICS_COUNTER_LINK_CONSUMED_SIZE_BYTES_OFF ] += (uint)sz;
     651             : 
     652           0 :     metric_regime_ticks[1] += housekeeping_ticks;
     653           0 :     metric_regime_ticks[4] += prefrag_ticks;
     654           0 :     long next = fd_tickcount();
     655           0 :     metric_regime_ticks[7] += (ulong)(next - now);
     656           0 :     now = next;
     657           0 :   }
     658           0 : }
     659             : 
     660             : FD_FN_UNUSED static void
     661             : STEM_(run)( fd_topo_t *      topo,
     662           0 :             fd_topo_tile_t * tile ) {
     663           0 :   const fd_frag_meta_t * in_mcache[ FD_TOPO_MAX_LINKS ];
     664           0 :   ulong * in_fseq[ FD_TOPO_MAX_TILE_IN_LINKS ];
     665             : 
     666           0 :   ulong polled_in_cnt = 0UL;
     667           0 :   for( ulong i=0UL; i<tile->in_cnt; i++ ) {
     668           0 :     if( FD_UNLIKELY( !tile->in_link_poll[ i ] ) ) continue;
     669             : 
     670           0 :     in_mcache[ polled_in_cnt ] = topo->links[ tile->in_link_id[ i ] ].mcache;
     671           0 :     FD_TEST( in_mcache[ polled_in_cnt ] );
     672           0 :     in_fseq[ polled_in_cnt ]   = tile->in_link_fseq[ i ];
     673           0 :     FD_TEST( in_fseq[ polled_in_cnt ] );
     674           0 :     polled_in_cnt += 1;
     675           0 :   }
     676             : 
     677           0 :   fd_frag_meta_t * out_mcache[ FD_TOPO_MAX_LINKS ];
     678           0 :   for( ulong i=0UL; i<tile->out_cnt; i++ ) {
     679           0 :     out_mcache[ i ] = topo->links[ tile->out_link_id[ i ] ].mcache;
     680           0 :     FD_TEST( out_mcache[ i ] );
     681           0 :   }
     682             : 
     683           0 :   ulong   reliable_cons_cnt = 0UL;
     684           0 :   ulong   cons_out[ FD_TOPO_MAX_LINKS ];
     685           0 :   ulong * cons_fseq[ FD_TOPO_MAX_LINKS ];
     686           0 :   for( ulong i=0UL; i<topo->tile_cnt; i++ ) {
     687           0 :     fd_topo_tile_t * consumer_tile = &topo->tiles[ i ];
     688           0 :     for( ulong j=0UL; j<consumer_tile->in_cnt; j++ ) {
     689           0 :       for( ulong k=0UL; k<tile->out_cnt; k++ ) {
     690           0 :         if( FD_UNLIKELY( consumer_tile->in_link_id[ j ]==tile->out_link_id[ k ] && consumer_tile->in_link_reliable[ j ] ) ) {
     691           0 :           cons_out[ reliable_cons_cnt ] = k;
     692           0 :           cons_fseq[ reliable_cons_cnt ] = consumer_tile->in_link_fseq[ j ];
     693           0 :           FD_TEST( cons_fseq[ reliable_cons_cnt ] );
     694           0 :           reliable_cons_cnt++;
     695             :           /* Need to test this, since each link may connect to many outs,
     696             :              you could construct a topology which has more than this
     697             :              consumers of links. */
     698           0 :           FD_TEST( reliable_cons_cnt<FD_TOPO_MAX_LINKS );
     699           0 :         }
     700           0 :       }
     701           0 :     }
     702           0 :   }
     703             : 
     704           0 :   fd_rng_t rng[1];
     705           0 :   FD_TEST( fd_rng_join( fd_rng_new( rng, 0, 0UL ) ) );
     706             : 
     707           0 :   STEM_CALLBACK_CONTEXT_TYPE * ctx = (STEM_CALLBACK_CONTEXT_TYPE*)fd_ulong_align_up( (ulong)fd_topo_obj_laddr( topo, tile->tile_obj_id ), STEM_CALLBACK_CONTEXT_ALIGN );
     708             : 
     709           0 :   STEM_(run1)( polled_in_cnt,
     710           0 :                in_mcache,
     711           0 :                in_fseq,
     712           0 :                tile->out_cnt,
     713           0 :                out_mcache,
     714           0 :                reliable_cons_cnt,
     715           0 :                cons_out,
     716           0 :                cons_fseq,
     717           0 :                STEM_BURST,
     718           0 :                STEM_LAZY,
     719           0 :                rng,
     720           0 :                fd_alloca( FD_STEM_SCRATCH_ALIGN, STEM_(scratch_footprint)( polled_in_cnt, tile->out_cnt, reliable_cons_cnt ) ),
     721           0 :                ctx );
     722           0 : }
     723             : 
     724             : #undef STEM_NAME
     725             : #undef STEM_
     726             : #undef STEM_BURST
     727             : #undef STEM_CALLBACK_CONTEXT_TYPE
     728             : #undef STEM_LAZY
     729             : #undef STEM_CALLBACK_DURING_HOUSEKEEPING
     730             : #undef STEM_CALLBACK_METRICS_WRITE
     731             : #undef STEM_CALLBACK_BEFORE_CREDIT
     732             : #undef STEM_CALLBACK_AFTER_CREDIT
     733             : #undef STEM_CALLBACK_BEFORE_FRAG
     734             : #undef STEM_CALLBACK_DURING_FRAG
     735             : #undef STEM_CALLBACK_AFTER_FRAG

Generated by: LCOV version 1.14