LCOV - code coverage report
Current view: top level - discof/forest - fd_forest.c (source / functions) Hit Total Coverage
Test: cov.lcov Lines: 0 618 0.0 %
Date: 2025-08-05 05:04:49 Functions: 0 32 0.0 %

          Line data    Source code
       1             : #include "fd_forest.h"
       2             : 
       3           0 : static void ver_inc( ulong ** ver ) {
       4           0 :   fd_fseq_update( *ver, fd_fseq_query( *ver ) + 1 );
       5           0 : }
       6             : 
       7           0 : #define VER_INC ulong * ver __attribute__((cleanup(ver_inc))) = fd_forest_ver( forest ); ver_inc( &ver )
       8             : 
       9             : #define FD_FOREST_PRINT 1
      10             : 
      11             : void *
      12           0 : fd_forest_new( void * shmem, ulong ele_max, ulong seed ) {
      13           0 :   FD_TEST( fd_ulong_is_pow2( ele_max ) );
      14             : 
      15           0 :   if( FD_UNLIKELY( !shmem ) ) {
      16           0 :     FD_LOG_WARNING(( "NULL mem" ));
      17           0 :     return NULL;
      18           0 :   }
      19             : 
      20           0 :   if( FD_UNLIKELY( !fd_ulong_is_aligned( (ulong)shmem, fd_forest_align() ) ) ) {
      21           0 :     FD_LOG_WARNING(( "misaligned mem" ));
      22           0 :     return NULL;
      23           0 :   }
      24             : 
      25           0 :   ulong footprint = fd_forest_footprint( ele_max );
      26           0 :   if( FD_UNLIKELY( !footprint ) ) {
      27           0 :     FD_LOG_WARNING(( "bad ele_max (%lu)", ele_max ));
      28           0 :     return NULL;
      29           0 :   }
      30             : 
      31           0 :   fd_wksp_t * wksp = fd_wksp_containing( shmem );
      32           0 :   if( FD_UNLIKELY( !wksp ) ) {
      33           0 :     FD_LOG_WARNING(( "shmem must be part of a workspace" ));
      34           0 :     return NULL;
      35           0 :   }
      36             : 
      37           0 :   fd_memset( shmem, 0, footprint );
      38           0 :   fd_forest_t * forest;
      39             : 
      40           0 :   FD_SCRATCH_ALLOC_INIT( l, shmem );
      41           0 :   forest          = FD_SCRATCH_ALLOC_APPEND( l, fd_forest_align(),          sizeof(fd_forest_t)                     );
      42           0 :   void * ver      = FD_SCRATCH_ALLOC_APPEND( l, fd_fseq_align(),            fd_fseq_footprint()                     );
      43           0 :   void * pool     = FD_SCRATCH_ALLOC_APPEND( l, fd_forest_pool_align(),     fd_forest_pool_footprint    ( ele_max ) );
      44           0 :   void * ancestry = FD_SCRATCH_ALLOC_APPEND( l, fd_forest_ancestry_align(), fd_forest_ancestry_footprint( ele_max ) );
      45           0 :   void * frontier = FD_SCRATCH_ALLOC_APPEND( l, fd_forest_frontier_align(), fd_forest_frontier_footprint( ele_max ) );
      46           0 :   void * orphaned = FD_SCRATCH_ALLOC_APPEND( l, fd_forest_orphaned_align(), fd_forest_orphaned_footprint( ele_max ) );
      47           0 :   void * deque    = FD_SCRATCH_ALLOC_APPEND( l, fd_forest_deque_align(),    fd_forest_deque_footprint   ( ele_max ) );
      48           0 :   FD_TEST( FD_SCRATCH_ALLOC_FINI( l, fd_forest_align() ) == (ulong)shmem + footprint );
      49             : 
      50           0 :   forest->root           = ULONG_MAX;
      51           0 :   forest->wksp_gaddr     = fd_wksp_gaddr_fast( wksp, forest );
      52           0 :   forest->ver_gaddr      = fd_wksp_gaddr_fast( wksp, fd_fseq_join           ( fd_fseq_new           ( ver,      FD_FOREST_VER_UNINIT ) ) );
      53           0 :   forest->pool_gaddr     = fd_wksp_gaddr_fast( wksp, fd_forest_pool_join    ( fd_forest_pool_new    ( pool,     ele_max              ) ) );
      54           0 :   forest->ancestry_gaddr = fd_wksp_gaddr_fast( wksp, fd_forest_ancestry_join( fd_forest_ancestry_new( ancestry, ele_max, seed        ) ) );
      55           0 :   forest->frontier_gaddr = fd_wksp_gaddr_fast( wksp, fd_forest_frontier_join( fd_forest_frontier_new( frontier, ele_max, seed        ) ) );
      56           0 :   forest->orphaned_gaddr = fd_wksp_gaddr_fast( wksp, fd_forest_orphaned_join( fd_forest_orphaned_new( orphaned, ele_max, seed        ) ) );
      57           0 :   forest->deque_gaddr    = fd_wksp_gaddr_fast( wksp, fd_forest_deque_join   ( fd_forest_deque_new   ( deque,    ele_max              ) ) );
      58             : 
      59           0 :   FD_COMPILER_MFENCE();
      60           0 :   FD_VOLATILE( forest->magic ) = FD_FOREST_MAGIC;
      61           0 :   FD_COMPILER_MFENCE();
      62             : 
      63           0 :   return shmem;
      64           0 : }
      65             : 
      66             : fd_forest_t *
      67           0 : fd_forest_join( void * shforest ) {
      68           0 :   fd_forest_t * forest = (fd_forest_t *)shforest;
      69             : 
      70           0 :   if( FD_UNLIKELY( !forest ) ) {
      71           0 :     FD_LOG_WARNING(( "NULL forest" ));
      72           0 :     return NULL;
      73           0 :   }
      74             : 
      75           0 :   if( FD_UNLIKELY( !fd_ulong_is_aligned((ulong)forest, fd_forest_align() ) ) ) {
      76           0 :     FD_LOG_WARNING(( "misaligned forest" ));
      77           0 :     return NULL;
      78           0 :   }
      79             : 
      80           0 :   fd_wksp_t * wksp = fd_wksp_containing( forest );
      81           0 :   if( FD_UNLIKELY( !wksp ) ) {
      82           0 :     FD_LOG_WARNING(( "forest must be part of a workspace" ));
      83           0 :     return NULL;
      84           0 :   }
      85             : 
      86           0 :   return forest;
      87           0 : }
      88             : 
      89             : void *
      90           0 : fd_forest_leave( fd_forest_t const * forest ) {
      91             : 
      92           0 :   if( FD_UNLIKELY( !forest ) ) {
      93           0 :     FD_LOG_WARNING(( "NULL forest" ));
      94           0 :     return NULL;
      95           0 :   }
      96             : 
      97           0 :   return (void *)forest;
      98           0 : }
      99             : 
     100             : void *
     101           0 : fd_forest_delete( void * forest ) {
     102             : 
     103           0 :   if( FD_UNLIKELY( !forest ) ) {
     104           0 :     FD_LOG_WARNING(( "NULL forest" ));
     105           0 :     return NULL;
     106           0 :   }
     107             : 
     108           0 :   if( FD_UNLIKELY( !fd_ulong_is_aligned((ulong)forest, fd_forest_align() ) ) ) {
     109           0 :     FD_LOG_WARNING(( "misaligned forest" ));
     110           0 :     return NULL;
     111           0 :   }
     112             : 
     113             :   // TODO: zero out mem?
     114             : 
     115           0 :   return forest;
     116           0 : }
     117             : 
     118             : fd_forest_t *
     119           0 : fd_forest_init( fd_forest_t * forest, ulong root_slot ) {
     120           0 :   FD_TEST( forest );
     121           0 :   FD_TEST( fd_fseq_query( fd_forest_ver( forest ) ) == FD_FOREST_VER_UNINIT );
     122             : 
     123           0 :   VER_INC;
     124             : 
     125           0 :   fd_forest_ele_t *      pool     = fd_forest_pool( forest );
     126           0 :   ulong                  null     = fd_forest_pool_idx_null( pool );
     127           0 :   fd_forest_frontier_t * frontier = fd_forest_frontier( forest );
     128             : 
     129             :   /* Initialize the root node from a pool element. */
     130             : 
     131           0 :   fd_forest_ele_t * root_ele = fd_forest_pool_ele_acquire( pool );
     132           0 :   root_ele->slot             = root_slot;
     133           0 :   root_ele->parent           = null;
     134           0 :   root_ele->child            = null;
     135           0 :   root_ele->sibling          = null;
     136           0 :   root_ele->buffered_idx     = 0;
     137           0 :   root_ele->complete_idx     = 0;
     138             : 
     139           0 :   fd_forest_ele_idxs_null( root_ele->idxs );
     140             : 
     141           0 :   forest->root = fd_forest_pool_idx( pool, root_ele );
     142           0 :   fd_forest_frontier_ele_insert( frontier, root_ele, pool ); /* cannot fail */
     143             : 
     144             :   /* Sanity checks. */
     145             : 
     146           0 :   FD_TEST( root_ele );
     147           0 :   FD_TEST( root_ele == fd_forest_frontier_ele_query( frontier, &root_slot, NULL, pool ));
     148           0 :   FD_TEST( root_ele->slot == root_slot );
     149             : 
     150           0 :   return forest;
     151           0 : }
     152             : 
     153             : void *
     154           0 : fd_forest_fini( fd_forest_t * forest ) {
     155           0 :   fd_fseq_update( fd_forest_ver( forest ), FD_FOREST_VER_UNINIT );
     156           0 :   return (void *)forest;
     157           0 : }
     158             : 
     159             : int
     160           0 : fd_forest_verify( fd_forest_t const * forest ) {
     161           0 :   if( FD_UNLIKELY( !forest ) ) {
     162           0 :     FD_LOG_WARNING(( "NULL forest" ));
     163           0 :     return -1;
     164           0 :   }
     165             : 
     166           0 :   if( FD_UNLIKELY( !fd_ulong_is_aligned( (ulong)forest, fd_forest_align() ) ) ) {
     167           0 :     FD_LOG_WARNING(( "misaligned forest" ));
     168           0 :     return -1;
     169           0 :   }
     170             : 
     171           0 :   fd_wksp_t * wksp = fd_wksp_containing( forest );
     172           0 :   if( FD_UNLIKELY( !wksp ) ) {
     173           0 :     FD_LOG_WARNING(( "forest must be part of a workspace" ));
     174           0 :     return -1;
     175           0 :   }
     176             : 
     177           0 :   if( FD_UNLIKELY( forest->magic!=FD_FOREST_MAGIC ) ) {
     178           0 :     FD_LOG_WARNING(( "bad magic" ));
     179           0 :     return -1;
     180           0 :   }
     181             : 
     182           0 :   if( FD_UNLIKELY( fd_fseq_query( fd_forest_ver_const( forest ) ) == ULONG_MAX ) ) {
     183           0 :     FD_LOG_WARNING(( "forest uninitialized or invalid" ));
     184           0 :     return -1;
     185           0 :   }
     186             : 
     187           0 :   fd_forest_ele_t const * pool = fd_forest_pool_const( forest );
     188           0 :   if( fd_forest_ancestry_verify( fd_forest_ancestry_const( forest ), fd_forest_pool_max( pool ), pool ) == -1 ) return -1;
     189           0 :   if( fd_forest_frontier_verify( fd_forest_frontier_const( forest ), fd_forest_pool_max( pool ), pool ) == -1 ) return -1;
     190             : 
     191           0 :   fd_forest_frontier_t const * frontier = fd_forest_frontier_const( forest );
     192           0 :   fd_forest_orphaned_t const * orphaned = fd_forest_orphaned_const( forest );
     193           0 :   fd_forest_ancestry_t const * ancestry = fd_forest_ancestry_const( forest );
     194             : 
     195             :   /* Invariant: elements can only appear in one of the three maps. */
     196           0 :   for( fd_forest_frontier_iter_t iter = fd_forest_frontier_iter_init( frontier, pool ); !fd_forest_frontier_iter_done( iter, frontier, pool ); iter = fd_forest_frontier_iter_next( iter, frontier, pool ) ) {
     197           0 :     fd_forest_ele_t const * ele = fd_forest_frontier_iter_ele_const( iter, frontier, pool );
     198           0 :     if( fd_forest_ancestry_ele_query_const( ancestry, &ele->slot, NULL, pool ) ) return -1;
     199           0 :     if( fd_forest_orphaned_ele_query_const( orphaned, &ele->slot, NULL, pool ) ) return -1;
     200           0 :   }
     201             : 
     202           0 :   for( fd_forest_orphaned_iter_t iter = fd_forest_orphaned_iter_init( orphaned, pool ); !fd_forest_orphaned_iter_done( iter, orphaned, pool ); iter = fd_forest_orphaned_iter_next( iter, orphaned, pool ) ) {
     203           0 :     fd_forest_ele_t const * ele = fd_forest_orphaned_iter_ele_const( iter, orphaned, pool );
     204           0 :     if( fd_forest_ancestry_ele_query_const( ancestry, &ele->slot, NULL, pool ) ) return -1;
     205           0 :     if( fd_forest_frontier_ele_query_const( frontier, &ele->slot, NULL, pool ) ) return -1;
     206           0 :   }
     207             : 
     208           0 :   return 0;
     209           0 : }
     210             : 
     211             : FD_FN_PURE static inline ulong *
     212           0 : fd_forest_deque( fd_forest_t * forest ) {
     213           0 :   return fd_wksp_laddr_fast( fd_forest_wksp( forest ), forest->deque_gaddr );
     214           0 : }
     215             : 
     216             : /* remove removes and returns a connected ele from ancestry or frontier
     217             :    maps.  does not remove orphaned ele.  does not unlink ele. */
     218             : 
     219             : static fd_forest_ele_t *
     220           0 : ancestry_frontier_remove( fd_forest_t * forest, ulong slot ) {
     221           0 :   fd_forest_ele_t * pool = fd_forest_pool( forest );
     222           0 :   fd_forest_ele_t * ele  = NULL;
     223           0 :   ele =                  fd_forest_ancestry_ele_remove( fd_forest_ancestry( forest ), &slot, NULL, pool );
     224           0 :   ele = fd_ptr_if( !ele, fd_forest_frontier_ele_remove( fd_forest_frontier( forest ), &slot, NULL, pool ), ele );
     225           0 :   return ele;
     226           0 : }
     227             : 
     228             : /* link ele to the tree via its sibling. */
     229             : 
     230             : static void
     231           0 : link_sibling( fd_forest_t * forest, fd_forest_ele_t * sibling, fd_forest_ele_t * ele ) {
     232           0 :   fd_forest_ele_t * pool = fd_forest_pool( forest );
     233           0 :   ulong             null = fd_forest_pool_idx_null( pool );
     234           0 :   while( FD_UNLIKELY( sibling->sibling != null )) sibling = fd_forest_pool_ele( pool, sibling->sibling );
     235           0 :   sibling->sibling = fd_forest_pool_idx( pool, ele );
     236           0 : }
     237             : 
     238             : /* link child to the tree via its parent. */
     239             : 
     240             : static void
     241           0 : link( fd_forest_t * forest, fd_forest_ele_t * parent, fd_forest_ele_t * child ) {
     242           0 :   fd_forest_ele_t * pool = fd_forest_pool( forest );
     243           0 :   ulong             null = fd_forest_pool_idx_null( pool );
     244           0 :   if( FD_LIKELY( parent->child == null ) ) parent->child = fd_forest_pool_idx( pool, child ); /* left-child */
     245           0 :   else link_sibling( forest, fd_forest_pool_ele( pool, parent->child ), child );          /* right-sibling */
     246           0 :   child->parent = fd_forest_pool_idx( pool, parent );
     247           0 : }
     248             : 
     249             : /* advance_frontier attempts to advance the frontier beginning from slot
     250             :    using BFS.  head is the first element of a linked list representing
     251             :    the BFS queue.  A slot can be advanced if all shreds for the block
     252             :    are received ie. consumed_idx = complete_idx. */
     253             : 
     254             : static void
     255           0 : advance_frontier( fd_forest_t * forest, ulong slot, ushort parent_off ) {
     256           0 :   fd_forest_ele_t *      pool     = fd_forest_pool( forest );
     257           0 :   fd_forest_ancestry_t * ancestry = fd_forest_ancestry( forest );
     258           0 :   fd_forest_frontier_t * frontier = fd_forest_frontier( forest );
     259           0 :   ulong                * queue    = fd_forest_deque( forest );
     260             : 
     261           0 :   fd_forest_ele_t * ele;
     262           0 :   ele = fd_forest_frontier_ele_query( fd_forest_frontier( forest ), &slot, NULL, pool );
     263           0 :   ulong parent_slot = slot - parent_off;
     264           0 :   ele = fd_ptr_if( !ele, fd_forest_frontier_ele_query( fd_forest_frontier( forest ), &parent_slot, NULL, pool ), ele );
     265           0 :   if( FD_UNLIKELY( !ele ) ) return;
     266             : 
     267           0 : # if FD_FOREST_USE_HANDHOLDING
     268           0 :   FD_TEST( fd_forest_deque_cnt( queue ) == 0 );
     269           0 : # endif
     270             : 
     271             :   /* BFS elements as pool idxs.
     272             :      Invariant: whatever is in the queue, must be on the frontier. */
     273           0 :   fd_forest_deque_push_tail( queue, fd_forest_pool_idx( pool, ele ) );
     274           0 :   while( FD_LIKELY( fd_forest_deque_cnt( queue ) ) ) {
     275           0 :     fd_forest_ele_t * head  = fd_forest_pool_ele( pool, fd_forest_deque_pop_head( queue ) );
     276           0 :     fd_forest_ele_t * child = fd_forest_pool_ele( pool, head->child );
     277           0 :     if( FD_LIKELY( child && head->complete_idx != UINT_MAX && head->buffered_idx == head->complete_idx ) ) {
     278           0 :       fd_forest_frontier_ele_remove( frontier, &head->slot, NULL, pool );
     279           0 :       fd_forest_ancestry_ele_insert( ancestry, head, pool );
     280           0 :       while( FD_LIKELY( child ) ) { /* append children to frontier */
     281           0 :         fd_forest_ancestry_ele_remove( ancestry, &child->slot, NULL, pool );
     282           0 :         fd_forest_frontier_ele_insert( frontier, child, pool );
     283             : 
     284           0 :         fd_forest_deque_push_tail( queue, fd_forest_pool_idx( pool, child ) );
     285           0 :         child = fd_forest_pool_ele( pool, child->sibling );
     286           0 :       }
     287           0 :     }
     288           0 :   }
     289           0 : }
     290             : 
     291             : static fd_forest_ele_t *
     292           0 : query( fd_forest_t * forest, ulong slot ) {
     293           0 :   fd_forest_ele_t *      pool      = fd_forest_pool( forest );
     294           0 :   fd_forest_ancestry_t * ancestry  = fd_forest_ancestry( forest );
     295           0 :   fd_forest_frontier_t * frontier  = fd_forest_frontier( forest );
     296           0 :   fd_forest_orphaned_t * orphaned  = fd_forest_orphaned( forest );
     297             : 
     298           0 :   fd_forest_ele_t * ele;
     299           0 :   ele =                  fd_forest_ancestry_ele_query( ancestry, &slot, NULL, pool );
     300           0 :   ele = fd_ptr_if( !ele, fd_forest_frontier_ele_query( frontier, &slot, NULL, pool ), ele );
     301           0 :   ele = fd_ptr_if( !ele, fd_forest_orphaned_ele_query( orphaned, &slot, NULL, pool ), ele );
     302           0 :   return ele;
     303           0 : }
     304             : 
     305             : static fd_forest_ele_t *
     306           0 : acquire( fd_forest_t * forest, ulong slot ) {
     307           0 :   fd_forest_ele_t * pool = fd_forest_pool( forest );
     308           0 :   fd_forest_ele_t * ele  = fd_forest_pool_ele_acquire( pool );
     309           0 :   ulong             null = fd_forest_pool_idx_null( pool );
     310             : 
     311           0 :   ele->slot    = slot;
     312           0 :   ele->next    = null;
     313           0 :   ele->parent  = null;
     314           0 :   ele->child   = null;
     315           0 :   ele->sibling = null;
     316             : 
     317           0 :   ele->buffered_idx = UINT_MAX;
     318           0 :   ele->complete_idx = UINT_MAX;
     319             : 
     320           0 :   fd_forest_ele_idxs_null( ele->cmpl ); /* FIXME expensive */
     321           0 :   fd_forest_ele_idxs_null( ele->fecs ); /* FIXME expensive */
     322           0 :   fd_forest_ele_idxs_null( ele->idxs ); /* FIXME expensive */
     323             : 
     324           0 :   return ele;
     325           0 : }
     326             : 
     327             : static fd_forest_ele_t *
     328           0 : insert( fd_forest_t * forest, ulong slot, ushort parent_off ) {
     329           0 :   fd_forest_ele_t * pool = fd_forest_pool( forest );
     330             : 
     331           0 : # if FD_FOREST_USE_HANDHOLDING
     332           0 :   FD_TEST( parent_off <= slot );                   /* caller err - inval */
     333           0 :   FD_TEST( fd_forest_pool_free( pool ) );          /* impl err - oom */
     334           0 :   FD_TEST( slot > fd_forest_root_slot( forest ) ); /* caller error - inval */
     335           0 : # endif
     336             : 
     337           0 :   fd_forest_ele_t * ele         = acquire( forest, slot );
     338           0 :   ulong             parent_slot = slot - parent_off;
     339           0 :   fd_forest_ele_t * parent      = query( forest, parent_slot );
     340           0 :   if( FD_LIKELY( parent ) ) {
     341           0 :     fd_forest_ancestry_ele_insert( fd_forest_ancestry( forest ), ele, pool );
     342           0 :     link( forest, parent, ele ); /* cannot fail */
     343             : 
     344             :     /* Edge case where we are creating a fork off of a node that is behind the frontier.
     345             :        We need to add this node to the frontier. */
     346             : 
     347           0 :     fd_forest_ele_t * ancestor = parent;
     348           0 :     while( ancestor /* ancestor exists */
     349           0 :            && !fd_forest_frontier_ele_query( fd_forest_frontier( forest ), &ancestor->slot, NULL, pool ) /* ancestor is not on frontier */
     350           0 :            && !fd_forest_orphaned_ele_query( fd_forest_orphaned( forest ), &ancestor->slot, NULL, pool ) /* ancestor is not an orphan */ ) {
     351           0 :       ancestor = fd_forest_pool_ele( pool, ancestor->parent );
     352           0 :     }
     353           0 :     if( FD_UNLIKELY( !ancestor ) ) {
     354             :       /* Did not find ancestor on frontier OR orphan, which means it must be behind the frontier barrier. */
     355           0 :       fd_forest_ancestry_ele_remove( fd_forest_ancestry( forest ), &ele->slot, NULL, pool );
     356           0 :       fd_forest_frontier_ele_insert( fd_forest_frontier( forest ), ele,              pool );
     357           0 :     }
     358           0 :   }
     359           0 :   return ele;
     360           0 : }
     361             : 
     362             : fd_forest_ele_t *
     363           0 : fd_forest_query( fd_forest_t * forest, ulong slot ) {
     364           0 :   return query( forest, slot );
     365           0 : }
     366             : 
     367             : fd_forest_ele_t *
     368           0 : fd_forest_data_shred_insert( fd_forest_t * forest, ulong slot, ushort parent_off, uint shred_idx, uint fec_set_idx, FD_PARAM_UNUSED int data_complete, int slot_complete ) {
     369           0 : # if FD_FOREST_USE_HANDHOLDING
     370           0 :   FD_TEST( slot > fd_forest_root_slot( forest ) ); /* caller error - inval */
     371           0 : # endif
     372             : 
     373           0 :   VER_INC;
     374             : 
     375           0 :   fd_forest_ele_t * pool = fd_forest_pool( forest );
     376           0 :   fd_forest_ele_t * ele  = query( forest, slot );
     377           0 :   if( FD_UNLIKELY( !ele ) ) ele = insert( forest, slot, parent_off ); /* cannot fail */
     378           0 :   if( FD_UNLIKELY( ele->parent == fd_forest_pool_idx_null( pool ) ) ) {
     379             : 
     380             :     /* `ele` is an orphan tree root so it does not have a parent. Now,
     381             :        having received a shred for ele, we know ele's parent
     382             :        slot. Here we check whether ele's parent is already in the tree.
     383             :        If it is, then the orphan tree rooted at ele can be linked to the
     384             :        tree containing ele's parent (which may be another orphan tree or
     385             :        the canonical tree). */
     386             : 
     387           0 :     fd_forest_ele_t * parent = query( forest, slot - parent_off );
     388           0 :     if( FD_UNLIKELY( !parent ) ) {  /* parent is either in canonical or another orphan tree */
     389           0 :       parent = acquire( forest, slot - parent_off );
     390           0 :       fd_forest_orphaned_ele_insert( fd_forest_orphaned( forest ), parent, pool ); /* update orphan root */
     391           0 :     }
     392           0 :     fd_forest_orphaned_ele_remove( fd_forest_orphaned( forest ), &ele->slot, NULL, pool );
     393           0 :     fd_forest_ancestry_ele_insert( fd_forest_ancestry( forest ), ele, pool );
     394           0 :     link( forest, parent, ele );
     395           0 :   }
     396           0 :   fd_forest_ele_idxs_insert( ele->fecs, fec_set_idx );
     397           0 :   fd_forest_ele_idxs_insert( ele->idxs, shred_idx );
     398           0 :   while( fd_forest_ele_idxs_test( ele->idxs, ele->buffered_idx + 1U ) ) ele->buffered_idx++;
     399           0 :   ele->complete_idx = fd_uint_if( slot_complete, shred_idx, ele->complete_idx );
     400           0 :   advance_frontier( forest, slot, parent_off );
     401           0 :   return ele;
     402           0 : }
     403             : 
     404             : fd_forest_ele_t const *
     405           0 : fd_forest_publish( fd_forest_t * forest, ulong new_root_slot ) {
     406           0 :   FD_LOG_DEBUG(( "[%s] slot %lu", __func__, new_root_slot ));
     407             : 
     408           0 :   VER_INC;
     409             : 
     410           0 :   fd_forest_ancestry_t * ancestry = fd_forest_ancestry( forest );
     411           0 :   fd_forest_frontier_t * frontier = fd_forest_frontier( forest );
     412           0 :   fd_forest_orphaned_t * orphaned = fd_forest_orphaned( forest );
     413           0 :   fd_forest_ele_t *      pool     = fd_forest_pool( forest );
     414           0 :   ulong                  null     = fd_forest_pool_idx_null( pool );
     415           0 :   ulong *                queue    = fd_forest_deque( forest );
     416             : 
     417           0 :   fd_forest_ele_t * old_root_ele = fd_forest_pool_ele( pool, forest->root );
     418           0 :   fd_forest_ele_t * new_root_ele = query( forest, new_root_slot );
     419             : 
     420           0 : # if FD_FOREST_USE_HANDHOLDING
     421           0 :   if( FD_LIKELY( new_root_ele ) ) {
     422           0 :     FD_TEST( new_root_ele->slot > old_root_ele->slot ); /* caller error - inval */
     423           0 :   }
     424           0 : # endif
     425             : 
     426             :   /* Edge case where if we haven't been getting repairs, and we have a
     427             :      gap between the root and orphans. we publish forward to a slot that
     428             :      we don't have. This only case this should be happening is when we
     429             :      load a second incremental and that incremental slot lives in the
     430             :      gap. In that case this isn't a bug, but we should be treating this
     431             :      new root like the snapshot slot / init root. Should be happening
     432             :      very rarely given a well-functioning repair.  */
     433             : 
     434           0 :   if( FD_UNLIKELY( !new_root_ele ) ) {
     435           0 :     new_root_ele = acquire( forest, new_root_slot );
     436           0 :     new_root_ele->complete_idx = 0;
     437           0 :     new_root_ele->buffered_idx = 0;
     438           0 :     fd_forest_frontier_ele_insert( frontier, new_root_ele, pool );
     439           0 :   }
     440             : 
     441             :   /* First, remove the previous root, and add it to a FIFO prune queue.
     442             :      head points to the queue head (initialized with old_root_ele). */
     443           0 : # if FD_FOREST_USE_HANDHOLDING
     444           0 :   FD_TEST( fd_forest_deque_cnt( queue ) == 0 );
     445           0 : # endif
     446           0 :   fd_forest_ele_t * head = ancestry_frontier_remove( forest, old_root_ele->slot );
     447           0 :   if( FD_LIKELY( head ) ) fd_forest_deque_push_tail( queue, fd_forest_pool_idx( pool, head ) );
     448             : 
     449             :   /* Second, BFS down the tree, inserting each ele into the prune queue
     450             :      except for the new root.  Loop invariant: head always descends from
     451             :      old_root_ele and never descends from new_root_ele. */
     452             : 
     453           0 :   while( FD_LIKELY( fd_forest_deque_cnt( queue ) ) ) {
     454           0 :     head = fd_forest_pool_ele( pool, fd_forest_deque_pop_head( queue ) );
     455           0 :     fd_forest_ele_t * child = fd_forest_pool_ele( pool, head->child );
     456           0 :     while( FD_LIKELY( child ) ) {
     457           0 :       if( FD_LIKELY( child != new_root_ele ) ) { /* do not prune new root or descendants */
     458           0 :         ulong idx = fd_forest_ancestry_idx_remove( ancestry, &child->slot, null, pool );
     459           0 :         idx       = fd_ulong_if( idx != null, idx, fd_forest_frontier_idx_remove( frontier, &child->slot, null, pool ) );
     460           0 :         fd_forest_deque_push_tail( queue, idx );
     461           0 :       }
     462           0 :       child = fd_forest_pool_ele( pool, child->sibling );
     463           0 :     }
     464           0 :     fd_forest_pool_ele_release( pool, head );
     465           0 :   }
     466             : 
     467             :   /* If there is nothing on the frontier, we have hit an edge case
     468             :      during catching up where all of our frontiers were < the new root.
     469             :      In that case we need to continue repairing from the new root, so
     470             :      add it to the frontier. */
     471             : 
     472           0 :   if( FD_UNLIKELY( fd_forest_frontier_iter_done( fd_forest_frontier_iter_init( frontier, pool ), frontier, pool ) ) ) {
     473           0 :     fd_forest_ele_t * remove = fd_forest_ancestry_ele_remove( ancestry, &new_root_ele->slot, NULL, pool );
     474           0 :     if( FD_UNLIKELY( !remove ) ) {
     475             :       /* Very rare case where during second incremental load we could publish to an orphaned slot */
     476           0 :       remove = fd_forest_orphaned_ele_remove( orphaned, &new_root_ele->slot, NULL, pool );
     477           0 :     }
     478           0 :     FD_TEST( remove == new_root_ele );
     479           0 :     fd_forest_frontier_ele_insert( frontier, new_root_ele, pool );
     480           0 :     new_root_ele->complete_idx = 0;
     481           0 :     new_root_ele->buffered_idx = 0;
     482           0 :     advance_frontier( forest, new_root_ele->slot, 0 );
     483           0 :   }
     484             : 
     485           0 :   new_root_ele->parent = null; /* unlink new root from parent */
     486           0 :   forest->root         = fd_forest_pool_idx( pool, new_root_ele );
     487             : 
     488             :   /* Lastly, cleanup orphans if there orphan heads < new_root_slot.
     489             :      First, add any relevant orphans to the prune queue. */
     490             : 
     491           0 :   for( fd_forest_orphaned_iter_t iter = fd_forest_orphaned_iter_init( orphaned, pool );
     492           0 :        !fd_forest_orphaned_iter_done( iter, orphaned, pool );
     493           0 :        iter = fd_forest_orphaned_iter_next( iter, orphaned, pool ) ) {
     494           0 :     fd_forest_ele_t * ele = fd_forest_orphaned_iter_ele( iter, orphaned, pool );
     495           0 :     if( FD_UNLIKELY( ele->slot < new_root_slot ) ) {
     496           0 :       fd_forest_deque_push_tail( queue, fd_forest_pool_idx( pool, ele ) );
     497           0 :     }
     498           0 :   }
     499             : 
     500             :   /* Now BFS and clean up children of these orphan heads */
     501           0 :   while( FD_UNLIKELY( fd_forest_deque_cnt( queue ) ) ) {
     502           0 :     head = fd_forest_pool_ele( pool, fd_forest_deque_pop_head( queue ) );
     503           0 :     fd_forest_ele_t * child = fd_forest_pool_ele( pool, head->child );
     504           0 :     while( FD_LIKELY( child ) ) {
     505           0 :       if( FD_LIKELY( child != new_root_ele ) ) {
     506           0 :         fd_forest_deque_push_tail( queue, fd_forest_pool_idx( pool, child ) );
     507           0 :       }
     508           0 :       child = fd_forest_pool_ele( pool, child->sibling );
     509           0 :     }
     510           0 :     ulong remove = fd_forest_orphaned_idx_remove( orphaned, &head->slot, null, pool ); /* remove myself */
     511           0 :     remove = fd_ulong_if( remove == null, fd_forest_ancestry_idx_remove( ancestry, &head->slot, null, pool ), remove );
     512           0 :     fd_forest_pool_ele_release( pool, head ); /* free head */
     513           0 :   }
     514           0 :   return new_root_ele;
     515           0 : }
     516             : 
     517             : fd_forest_iter_t
     518           0 : fd_forest_iter_init( fd_forest_t * forest ) {
     519             :   /* Find first element. Anything on the frontier. */
     520           0 :   fd_forest_ele_t      const * pool     = fd_forest_pool_const( forest );
     521           0 :   fd_forest_frontier_t const * frontier = fd_forest_frontier_const( forest );
     522             : 
     523           0 :   fd_forest_frontier_iter_t frontier_iter = fd_forest_frontier_iter_init( frontier, pool );
     524           0 :   fd_forest_iter_t          repair_iter   = { fd_forest_pool_idx_null( pool ),
     525           0 :                                               UINT_MAX,
     526           0 :                                               fd_fseq_query( fd_forest_ver_const( forest ) ),
     527           0 :                                               frontier_iter };
     528             :   /* Nothing on frontier */
     529             : 
     530           0 :   if( FD_UNLIKELY( fd_forest_frontier_iter_done( frontier_iter, frontier, pool ) ) ) return repair_iter;
     531             : 
     532             :   /* Populate initial iter shred index */
     533             : 
     534           0 :   fd_forest_ele_t const * ele = fd_forest_frontier_iter_ele_const( frontier_iter, frontier, pool );
     535           0 :   while( ele->complete_idx != UINT_MAX && ele->buffered_idx == ele->complete_idx ) {
     536             :     /* This fork frontier is actually complete, so we can skip it. Also
     537             :        handles edge case where we are calling iter_init right after a
     538             :        forest_init */
     539           0 :     frontier_iter = fd_forest_frontier_iter_next( frontier_iter, frontier, pool );
     540           0 :     if( FD_UNLIKELY( fd_forest_frontier_iter_done( frontier_iter, frontier, pool ) ) ) {
     541           0 :       repair_iter.ele_idx   = fd_forest_pool_idx_null( pool );
     542           0 :       repair_iter.shred_idx = UINT_MAX; /* no more elements */
     543           0 :       return repair_iter;
     544           0 :     }
     545           0 :     ele = fd_forest_frontier_iter_ele_const( frontier_iter, frontier, pool );
     546           0 :   }
     547             : 
     548           0 :   repair_iter.ele_idx   = frontier_iter.ele_idx;
     549           0 :   repair_iter.shred_idx = ele->complete_idx == UINT_MAX ? UINT_MAX : ele->buffered_idx + 1;
     550             : 
     551           0 :   return repair_iter;
     552           0 : }
     553             : 
     554             : fd_forest_iter_t
     555           0 : fd_forest_iter_next( fd_forest_iter_t iter, fd_forest_t const * forest ) {
     556           0 :   fd_forest_frontier_t const * frontier = fd_forest_frontier_const( forest );
     557           0 :   fd_forest_ele_t const      * pool     = fd_forest_pool_const( forest );
     558           0 :   fd_forest_ele_t const      * ele      = fd_forest_pool_ele_const( pool, iter.ele_idx );
     559             : 
     560           0 :   if( iter.frontier_ver != fd_fseq_query( fd_forest_ver_const( forest ) ) ) {
     561             :     /* If the frontier has changed since we started this traversal, we
     562             :        need to reset the iterator. */
     563           0 :     iter.ele_idx   = fd_forest_pool_idx_null( pool ) ;
     564           0 :     iter.shred_idx = UINT_MAX; /* no more elements */
     565           0 :     return iter;
     566           0 :   }
     567             : 
     568           0 :   uint next_shred_idx = iter.shred_idx;
     569           0 :   for(;;) {
     570           0 :     next_shred_idx++;
     571             : 
     572             :     /* Case 1: No more shreds in this slot to request, move to the
     573             :        next one. Wraparound the shred_idx.
     574             : 
     575             :        Case 2: original iter.shred_idx == UINT_MAX (implies prev req
     576             :        was a highest_window_idx request). Also requires moving to next
     577             :        slot and wrapping the shred_idx. */
     578             : 
     579           0 :     if( FD_UNLIKELY( next_shred_idx >= ele->complete_idx || iter.shred_idx == UINT_MAX ) ) {
     580           0 :       iter.ele_idx = ele->child;
     581           0 :       ele          = fd_forest_pool_ele_const( pool, iter.ele_idx );
     582           0 :       if( FD_UNLIKELY( iter.ele_idx == fd_forest_pool_idx_null( pool ) ) ) {
     583           0 :         iter.shred_idx = UINT_MAX; /* no more elements */
     584             : 
     585             :         /* rare and unlikely to happen during a regular run, but if the
     586             :            frontier pool hasn't changed at all since we started this
     587             :            traversal, we can cleanly select the next node in the
     588             :            frontier using the stored frontier iterator. If the frontier
     589             :            has changed though, we should just return done and let the
     590             :            caller reset the iterator. */
     591             : 
     592           0 :         if( FD_UNLIKELY( iter.frontier_ver == fd_fseq_query( fd_forest_ver_const( forest ) ) ) ) {
     593           0 :           iter.head = fd_forest_frontier_iter_next( iter.head, frontier, pool );
     594           0 :           if( FD_UNLIKELY( !fd_forest_frontier_iter_done( iter.head, frontier, pool ) ) ) {
     595           0 :             iter.ele_idx   = iter.head.ele_idx;
     596           0 :             ele            = fd_forest_pool_ele_const( pool, iter.head.ele_idx );
     597           0 :             iter.shred_idx = ele->complete_idx == UINT_MAX ? UINT_MAX : ele->buffered_idx + 1;
     598           0 :           }
     599           0 :         }
     600           0 :         return iter;
     601           0 :       }
     602           0 :       next_shred_idx = ele->buffered_idx + 1;
     603           0 :     }
     604             : 
     605             :     /* Common case - valid shred to request. Note you can't know the
     606             :        ele->complete_idx until you have actually recieved the slot
     607             :        complete shred, thus the we can do lt instead of leq  */
     608             : 
     609           0 :     if( ele->complete_idx != UINT_MAX &&
     610           0 :         next_shred_idx < ele->complete_idx &&
     611           0 :         !fd_forest_ele_idxs_test( ele->idxs, next_shred_idx ) ) {
     612           0 :       iter.shred_idx = next_shred_idx;
     613           0 :       break;
     614           0 :     }
     615             : 
     616             :     /* Current slot actually needs a highest_window_idx request */
     617             : 
     618           0 :     if( FD_UNLIKELY( ele->complete_idx == UINT_MAX ) ) {
     619           0 :       iter.shred_idx = UINT_MAX;
     620           0 :       break;
     621           0 :     }
     622           0 :   }
     623           0 :   return iter;
     624           0 : }
     625             : 
     626             : int
     627           0 : fd_forest_iter_done( fd_forest_iter_t iter, fd_forest_t const * forest ) {
     628           0 :   fd_forest_ele_t const * pool = fd_forest_pool_const( forest );
     629           0 :   return iter.ele_idx == fd_forest_pool_idx_null( pool ); /* no more elements */
     630           0 : }
     631             : 
     632             : #include <stdio.h>
     633             : 
     634             : static void
     635           0 : preorder( fd_forest_t const * forest, fd_forest_ele_t const * ele ) {
     636           0 :   fd_forest_ele_t const * pool  = fd_forest_pool_const( forest );
     637           0 :   fd_forest_ele_t const * child = fd_forest_pool_ele_const( pool, ele->child );
     638           0 :   printf( "%lu ", ele->slot );
     639           0 :   while( FD_LIKELY( child ) ) {
     640           0 :     preorder( forest, child );
     641           0 :     child = fd_forest_pool_ele_const( pool, child->sibling );
     642           0 :   }
     643           0 : }
     644             : 
     645             : void
     646           0 : fd_forest_preorder_print( fd_forest_t const * forest ) {
     647           0 :   FD_LOG_NOTICE( ( "\n\n[Preorder]" ) );
     648           0 :   preorder( forest, fd_forest_pool_ele_const( fd_forest_pool_const( forest ), forest->root ) );
     649           0 :   printf( "\n\n" );
     650           0 : }
     651             : 
     652             : /* TODO use bit tricks / change */
     653             : static int
     654           0 : num_digits( ulong slot ) {
     655             :   /* using log10 */
     656           0 :   int digits = 0;
     657           0 :   while( slot ) {
     658           0 :     digits++;
     659           0 :     slot /= 10;
     660           0 :   }
     661           0 :   return digits;
     662           0 : }
     663             : 
     664             : static void
     665             : ancestry_print2( fd_forest_t const * forest,
     666             :                  fd_forest_ele_t const    * ele,
     667             :                  fd_forest_ele_t const    * prev,
     668             :                  ulong        last_printed,
     669             :                  int          depth,
     670           0 :                  const char * prefix ) {
     671             : 
     672           0 :   if( FD_UNLIKELY( ele == NULL ) ) return;
     673             : 
     674           0 :   fd_forest_ele_t const * pool = fd_forest_pool_const( forest );
     675           0 :   int digits = num_digits( ele->slot );
     676             : 
     677             :   /* If there is a prefix, this means we are on a fork,  and we need to
     678             :      indent to the correct depth. We do depth - 1 for more satisfying
     679             :      spacing. */
     680           0 :   if( FD_UNLIKELY( strcmp( prefix, "" ) ) ) {
     681           0 :     for( int i = 0; i < depth - 1; i++ ) printf( " " );
     682           0 :     if( depth > 0 ) printf( "%s", prefix );
     683           0 :   }
     684             : 
     685           0 :   if ( FD_UNLIKELY( !prev ) ) { // New interval
     686           0 :     printf("[%lu" , ele->slot );
     687           0 :     last_printed = ele->slot;
     688           0 :     depth       += 1 + digits;
     689           0 :   }
     690             : 
     691           0 :   fd_forest_ele_t const * curr = fd_forest_pool_ele_const( pool, ele->child );
     692             : 
     693             :   /* Cases in which we close the interval:
     694             :      1. the slots are no longer consecutive. no eliding, close bracket
     695             :      2. current ele has multiple children, want to print forks.
     696             :      Maintain last_printed on this fork so that we don't print [a, a]
     697             :      intervals. */
     698             : 
     699           0 :   fd_forest_ele_t const * new_prev = ele;
     700             : 
     701           0 :   if( prev && prev->slot != ele->slot - 1 ) { // non-consecutive, do not elide
     702           0 :     if( last_printed == prev->slot ){
     703           0 :       printf( "] ── [%lu", ele->slot );
     704           0 :       depth += digits + 6;
     705           0 :     } else {
     706           0 :       printf( ", %lu] ── [%lu", prev->slot, ele->slot );
     707           0 :       depth += digits + num_digits(prev->slot ) + 8;
     708           0 :     }
     709           0 :     last_printed = ele->slot;
     710           0 :   } else if( curr && curr->sibling != ULONG_MAX ) { // has multiple children, do not elide
     711           0 :     if( last_printed == ele->slot ){
     712           0 :       printf( "] ── " );
     713           0 :       depth += 5;
     714           0 :     } else {
     715           0 :       printf( ", %lu] ── ", ele->slot );
     716           0 :       depth += digits + 2;
     717           0 :     }
     718           0 :     last_printed = ele->slot;
     719           0 :     new_prev = NULL;
     720           0 :   }
     721             : 
     722           0 :   if( !curr ){ // no children, close bracket, end fork
     723           0 :     if( last_printed == ele->slot ){
     724           0 :       printf( "]\n" );
     725           0 :     } else {
     726           0 :       printf( ", %lu]\n", ele->slot );
     727           0 :     }
     728           0 :     return;
     729           0 :   }
     730             : 
     731           0 :   char new_prefix[512]; /* FIXME size this correctly */
     732           0 :   new_prefix[0] = '\0'; /* first fork stays on the same line, no prefix */
     733           0 :   while( curr ) {
     734           0 :     if( fd_forest_pool_ele_const( pool, curr->sibling ) ) {
     735           0 :       ancestry_print2( forest, curr, new_prev, last_printed, depth, new_prefix );
     736           0 :     } else {
     737           0 :       ancestry_print2( forest, curr, new_prev, last_printed, depth, new_prefix );
     738           0 :     }
     739           0 :     curr = fd_forest_pool_ele_const( pool, curr->sibling );
     740             : 
     741             :     /* Set up prefix for following iterations */
     742           0 :     if( curr && curr->sibling != ULONG_MAX ) {
     743           0 :       sprintf( new_prefix, "├── " ); /* any following forks start on new lines */
     744           0 :     } else {
     745           0 :       sprintf( new_prefix, "└── " ); /* any following forks start on new lines */
     746           0 :     }
     747           0 :   }
     748             : 
     749           0 : }
     750             : 
     751             : static void FD_FN_UNUSED
     752           0 : ancestry_print( fd_forest_t const * forest, fd_forest_ele_t const * ele, int space, const char * prefix ) {
     753           0 :   fd_forest_ele_t const * pool = fd_forest_pool_const( forest );
     754           0 : 
     755           0 :   if( ele == NULL ) return;
     756           0 : 
     757           0 :   if( space > 0 ) printf( "\n" );
     758           0 :   for( int i = 0; i < space; i++ ) printf( " " );
     759           0 :   if ( ele->complete_idx == UINT_MAX ) printf( "%s%lu (%u/?)", prefix, ele->slot, ele->buffered_idx + 1 );
     760           0 :   else printf( "%s%lu (%u/%u)", prefix, ele->slot, ele->buffered_idx + 1, ele->complete_idx + 1 );
     761           0 : 
     762           0 :   fd_forest_ele_t const * curr = fd_forest_pool_ele_const( pool, ele->child );
     763           0 : 
     764           0 :   char new_prefix[1024]; /* FIXME size this correctly */
     765           0 :   while( curr ) {
     766           0 :     if( fd_forest_pool_ele_const( pool, curr->sibling ) ) {
     767           0 :       sprintf( new_prefix, "├── " ); /* branch indicating more siblings follow */
     768           0 :       ancestry_print( forest, curr, space + 4, new_prefix );
     769           0 :     } else {
     770           0 :       sprintf( new_prefix, "└── " ); /* end branch */
     771           0 :       ancestry_print( forest, curr, space + 4, new_prefix );
     772           0 :     }
     773           0 :     curr = fd_forest_pool_ele_const( pool, curr->sibling );
     774           0 :   }
     775           0 : }
     776             : 
     777             : static void
     778           0 : ancestry_print3( fd_forest_t const * forest, fd_forest_ele_t const * ele, int space, const char * prefix, fd_forest_ele_t const * prev, int elide ) {
     779           0 :   fd_forest_ele_t const * pool = fd_forest_pool_const( forest );
     780             : 
     781           0 :   if( ele == NULL ) return;
     782             : 
     783             :   /* print the slot itself. either we might need to start a new interval, or it may get elided */
     784           0 :   fd_forest_ele_t const * child = fd_forest_pool_ele_const( pool, ele->child );
     785             : 
     786           0 :   if( !elide ) {
     787           0 :     if( space > 0 ) printf( "\n" );
     788           0 :     for( int i = 0; i < space; i++ ) printf( " " );
     789           0 :     printf( "%s", prefix );
     790           0 :     printf( "%lu", ele->slot );
     791           0 :   }
     792             : 
     793           0 :   if( !child && !elide ) { /* double check these cases arent the same...*/
     794           0 :     printf( "]" );
     795           0 :     return;
     796           0 :   } /* no children, close bracket */
     797             : 
     798           0 :   if( !child && elide ) {
     799           0 :     printf( ", %lu]", ele->slot );
     800           0 :     return;
     801           0 :   }
     802             : 
     803           0 :   prev = ele;
     804           0 :   char new_prefix[1024]; /* FIXME size this correctly */
     805           0 :   int one_child = child && child->sibling == ULONG_MAX;
     806           0 :   if( one_child &&
     807           0 :       child->slot != ele->slot + 1 ) { // if I have ONE CHILD and one child is non-consecutive
     808             : 
     809           0 :     if( elide ) {
     810             :       /* current slot wasn't printed, but now that we are branching,
     811             :          we will want to print the current slot and close the bracket */
     812           0 :       printf( ", %lu]", ele->slot );
     813           0 :       space += fd_int_max( num_digits( ele->slot ) + 2, 0 );
     814           0 :     } else {
     815           0 :       printf( "]");
     816           0 :     }
     817             : 
     818           0 :     sprintf( new_prefix, "└── [" ); /* end branch */
     819           0 :     ancestry_print3( forest, child, space + 5, new_prefix, prev, 0 );
     820           0 :   } else if ( one_child && child->slot == ele->slot + 1 ) {
     821           0 :     ancestry_print3( forest, child, space, prefix, prev, 1);
     822           0 :   } else { /* multiple children */
     823           0 :     if( elide ) {
     824             :       /* current slot wasn't printed, but now that we are branching,
     825             :          we will want to print the current slot and close the bracket */
     826           0 :       printf( ", %lu]", ele->slot );
     827           0 :       space += fd_int_max( num_digits( ele->slot ) + 2, 0 );
     828           0 :     } else {
     829           0 :       printf( "]");
     830           0 :     }
     831             : 
     832           0 :     while( child ) {
     833           0 :       if( fd_forest_pool_ele_const( pool, child->sibling ) ) {
     834           0 :         sprintf( new_prefix, "├── [" ); /* branch indicating more siblings follow */
     835           0 :         ancestry_print3( forest, child, space + 5, new_prefix, prev, 0 );
     836           0 :       } else {
     837           0 :         sprintf( new_prefix, "└── [" ); /* end branch */
     838           0 :         ancestry_print3( forest, child, space + 5, new_prefix, prev, 0 );
     839           0 :       }
     840           0 :       child = fd_forest_pool_ele_const( pool, child->sibling );
     841           0 :     }
     842           0 :   }
     843           0 : }
     844             : 
     845             : void
     846           0 : fd_forest_ancestry_print( fd_forest_t const * forest ) {
     847           0 :   FD_LOG_NOTICE(("\n\n[Ancestry]\n\n" ) );
     848             : 
     849           0 :   ancestry_print3( forest, fd_forest_pool_ele_const( fd_forest_pool_const( forest ), forest->root ), 0, "[", NULL, 0 );
     850           0 : }
     851             : 
     852             : void
     853           0 : fd_forest_frontier_print( fd_forest_t const * forest ) {
     854           0 :   printf( "\n\n[Frontier]\n" );
     855           0 :   fd_forest_ele_t const *      pool     = fd_forest_pool_const( forest );
     856           0 :   fd_forest_frontier_t const * frontier = fd_forest_frontier_const( forest );
     857           0 :   for( fd_forest_frontier_iter_t iter = fd_forest_frontier_iter_init( frontier, pool );
     858           0 :        !fd_forest_frontier_iter_done( iter, frontier, pool );
     859           0 :        iter = fd_forest_frontier_iter_next( iter, frontier, pool ) ) {
     860           0 :     fd_forest_ele_t const * ele = fd_forest_frontier_iter_ele_const( iter, frontier, pool );
     861           0 :     printf("%lu (%u/%u)\n", ele->slot, ele->buffered_idx + 1, ele->complete_idx + 1 );
     862             :    //ancestry_print( forest, fd_forest_pool_ele_const( fd_forest_pool_const( forest ), fd_forest_pool_idx( pool, ele ) ), 0, "" );
     863           0 :   }
     864           0 : }
     865             : 
     866             : void
     867           0 : fd_forest_orphaned_print( fd_forest_t const * forest ) {
     868           0 :   printf( "\n\n[Orphaned]\n" );
     869           0 :   fd_forest_orphaned_t const * orphaned = fd_forest_orphaned_const( forest );
     870           0 :   fd_forest_ele_t const * pool = fd_forest_pool_const( forest );
     871           0 :   for( fd_forest_orphaned_iter_t iter = fd_forest_orphaned_iter_init( orphaned, pool );
     872           0 :        !fd_forest_orphaned_iter_done( iter, orphaned, pool );
     873           0 :        iter = fd_forest_orphaned_iter_next( iter, orphaned, pool ) ) {
     874           0 :     fd_forest_ele_t const * ele = fd_forest_orphaned_iter_ele_const( iter, orphaned, pool );
     875           0 :     ancestry_print2( forest, fd_forest_pool_ele_const( fd_forest_pool_const( forest ), fd_forest_pool_idx( pool, ele ) ), NULL, 0, 0, "" );
     876           0 :   }
     877           0 : }
     878             : 
     879             : void
     880           0 : fd_forest_print( fd_forest_t const * forest ) {
     881           0 :   if( FD_UNLIKELY( forest->root == ULONG_MAX ) ) return;
     882           0 : # if FD_FOREST_PRINT
     883           0 :   fd_forest_ancestry_print( forest );
     884           0 :   fd_forest_frontier_print( forest );
     885           0 :   fd_forest_orphaned_print( forest );
     886             :   printf("\n\n");
     887           0 : # endif
     888           0 : }
     889             : 
     890             : #undef FD_FOREST_PRINT

Generated by: LCOV version 1.14