LCOV - code coverage report
Current view: top level - flamenco/vm - fd_vm_interp_core.c (source / functions) Hit Total Coverage
Test: cov.lcov Lines: 587 648 90.6 %
Date: 2025-03-20 12:08:36 Functions: 0 0 -

          Line data    Source code
       1             :   /* This is the VM SBPF interpreter core.  The caller unpacks the VM
       2             :      state and then just lets execution continue into this (or jumps to
       3             :      interp_exec) to start running.  The VM will run until it halts or
       4             :      faults.  On normal termination, it will branch to interp_halt to
       5             :      exit.  Each fault has its own exit label to allow the caller to
       6             :      handle individually. */
       7             : 
       8             :   /* FIXME: SIGILLS FOR VARIOUS THINGS THAT HAVE UNNECESSARY BITS IN IMM
       9             :      SET? (LIKE WIDE SHIFTS?) */
      10             : 
      11        7779 : # if defined(__GNUC__) /* -Wpedantic rejects labels as values and rejects goto *expr */
      12        7779 : # pragma GCC diagnostic push
      13        7779 : # pragma GCC diagnostic ignored "-Wpedantic"
      14        7779 : # endif
      15             : 
      16        7779 : # if defined(__clang__) /* Clang is differently picky about labels as values and goto *expr */
      17        7779 : # pragma clang diagnostic push
      18        7779 : # pragma clang diagnostic ignored "-Wpedantic"
      19        7779 : # pragma clang diagnostic ignored "-Wgnu-label-as-value"
      20        7779 : # endif
      21             : 
      22             :   /* Include the jump table */
      23             : 
      24        7779 : # include "fd_vm_interp_jump_table.c"
      25             : 
      26             :   /* Update the jump table based on SBPF version */
      27             : 
      28        7779 :   ulong sbpf_version = vm->sbpf_version;
      29             : 
      30             :   /* SIMD-0173: LDDW */
      31        7779 :   interp_jump_table[ 0x18 ] = FD_VM_SBPF_ENABLE_LDDW(sbpf_version) ? &&interp_0x18 : &&sigill;
      32        7779 :   interp_jump_table[ 0xf7 ] = FD_VM_SBPF_ENABLE_LDDW(sbpf_version) ? &&sigill : &&interp_0xf7; /* HOR64 */
      33             : 
      34             :   /* SIMD-0173: LE */
      35        7779 :   interp_jump_table[ 0xd4 ] = FD_VM_SBPF_ENABLE_LE  (sbpf_version) ? &&interp_0xd4 : &&sigill;
      36             : 
      37             :   /* SIMD-0173: LDXW, STW, STXW */
      38        7779 :   interp_jump_table[ 0x61 ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&sigill : &&interp_0x8c;
      39        7779 :   interp_jump_table[ 0x62 ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&sigill : &&interp_0x87;
      40        7779 :   interp_jump_table[ 0x63 ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&sigill : &&interp_0x8f;
      41        7779 :   interp_jump_table[ 0x8c ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&interp_0x8c : &&sigill;
      42        7779 :   interp_jump_table[ 0x87 ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&interp_0x87 : &&interp_0x87depr;
      43        7779 :   interp_jump_table[ 0x8f ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&interp_0x8f : &&sigill;
      44             : 
      45             :   /* SIMD-0173: LDXH, STH, STXH */
      46        7779 :   interp_jump_table[ 0x69 ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&sigill : &&interp_0x3c;
      47        7779 :   interp_jump_table[ 0x6a ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&sigill : &&interp_0x37;
      48        7779 :   interp_jump_table[ 0x6b ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&sigill : &&interp_0x3f;
      49        7779 :   interp_jump_table[ 0x3c ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&interp_0x3c : &&interp_0x3cdepr;
      50        7779 :   interp_jump_table[ 0x37 ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&interp_0x37 : &&interp_0x37depr;
      51        7779 :   interp_jump_table[ 0x3f ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&interp_0x3f : &&interp_0x3fdepr;
      52             : 
      53             :   /* SIMD-0173: LDXB, STB, STXB */
      54        7779 :   interp_jump_table[ 0x71 ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&sigill : &&interp_0x2c;
      55        7779 :   interp_jump_table[ 0x72 ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&sigill : &&interp_0x27;
      56        7779 :   interp_jump_table[ 0x73 ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&sigill : &&interp_0x2f;
      57        7779 :   interp_jump_table[ 0x2c ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&interp_0x2c : &&interp_0x2cdepr;
      58        7779 :   interp_jump_table[ 0x27 ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&interp_0x27 : &&interp_0x27depr;
      59        7779 :   interp_jump_table[ 0x2f ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&interp_0x2f : &&interp_0x2fdepr;
      60             : 
      61             :   /* SIMD-0173: LDXDW, STDW, STXDW */
      62        7779 :   interp_jump_table[ 0x79 ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&sigill : &&interp_0x9c;
      63        7779 :   interp_jump_table[ 0x7a ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&sigill : &&interp_0x97;
      64        7779 :   interp_jump_table[ 0x7b ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&sigill : &&interp_0x9f;
      65        7779 :   interp_jump_table[ 0x9c ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&interp_0x9c : &&interp_0x9cdepr;
      66        7779 :   interp_jump_table[ 0x97 ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&interp_0x97 : &&interp_0x97depr;
      67        7779 :   interp_jump_table[ 0x9f ] = FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(sbpf_version) ? &&interp_0x9f : &&interp_0x9fdepr;
      68             : 
      69             :   /* SIMD-0173: CALLX */
      70        7779 :   interp_jump_table[ 0x8d ] = FD_VM_SBPF_CALLX_USES_SRC_REG(sbpf_version) ? &&interp_0x8d : &&interp_0x8ddepr;
      71             : 
      72             :   /* SIMD-0174: PQR */
      73        7779 :   interp_jump_table[ 0x36 ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0x36 : &&sigill;
      74        7779 :   interp_jump_table[ 0x3e ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0x3e : &&sigill;
      75             : 
      76        7779 :   interp_jump_table[ 0x46 ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0x46 : &&sigill;
      77        7779 :   interp_jump_table[ 0x4e ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0x4e : &&sigill;
      78        7779 :   interp_jump_table[ 0x56 ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0x56 : &&sigill;
      79        7779 :   interp_jump_table[ 0x5e ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0x5e : &&sigill;
      80        7779 :   interp_jump_table[ 0x66 ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0x66 : &&sigill;
      81        7779 :   interp_jump_table[ 0x6e ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0x6e : &&sigill;
      82        7779 :   interp_jump_table[ 0x76 ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0x76 : &&sigill;
      83        7779 :   interp_jump_table[ 0x7e ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0x7e : &&sigill;
      84             : 
      85        7779 :   interp_jump_table[ 0x86 ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0x86 : &&sigill;
      86        7779 :   interp_jump_table[ 0x8e ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0x8e : &&sigill;
      87        7779 :   interp_jump_table[ 0x96 ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0x96 : &&sigill;
      88        7779 :   interp_jump_table[ 0x9e ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0x9e : &&sigill;
      89        7779 :   interp_jump_table[ 0xb6 ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0xb6 : &&sigill;
      90        7779 :   interp_jump_table[ 0xbe ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0xbe : &&sigill;
      91             : 
      92        7779 :   interp_jump_table[ 0xc6 ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0xc6 : &&sigill;
      93        7779 :   interp_jump_table[ 0xce ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0xce : &&sigill;
      94        7779 :   interp_jump_table[ 0xd6 ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0xd6 : &&sigill;
      95        7779 :   interp_jump_table[ 0xde ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0xde : &&sigill;
      96        7779 :   interp_jump_table[ 0xe6 ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0xe6 : &&sigill;
      97        7779 :   interp_jump_table[ 0xee ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0xee : &&sigill;
      98        7779 :   interp_jump_table[ 0xf6 ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0xf6 : &&sigill;
      99        7779 :   interp_jump_table[ 0xfe ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&interp_0xfe : &&sigill;
     100             : 
     101             :   /* SIMD-0174: disable MUL, DIV, MOD */
     102        7779 :   interp_jump_table[ 0x24 ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&sigill : &&interp_0x24;
     103        7779 :   interp_jump_table[ 0x34 ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&sigill : &&interp_0x34;
     104        7779 :   interp_jump_table[ 0x94 ] = FD_VM_SBPF_ENABLE_PQR (sbpf_version) ? &&sigill : &&interp_0x94;
     105             : 
     106             :   /* SIMD-0174: NEG */
     107        7779 :   interp_jump_table[ 0x84 ] = FD_VM_SBPF_ENABLE_NEG (sbpf_version) ? &&interp_0x84 : &&sigill;
     108             :   /* note: 0x87 should not be overwritten because it was NEG64 and it becomes STW */
     109             : 
     110             :   /* SIMD-0174: Explicit Sign Extension + Register Immediate Subtraction.
     111             :      Note: 0x14 is affected by both. */
     112        7779 :   interp_jump_table[ 0x04 ] = FD_VM_SBPF_EXPLICIT_SIGN_EXT        (sbpf_version) ? &&interp_0x04 : &&interp_0x04depr;
     113        7779 :   interp_jump_table[ 0x0c ] = FD_VM_SBPF_EXPLICIT_SIGN_EXT        (sbpf_version) ? &&interp_0x0c : &&interp_0x0cdepr;
     114        7779 :   interp_jump_table[ 0x1c ] = FD_VM_SBPF_EXPLICIT_SIGN_EXT        (sbpf_version) ? &&interp_0x1c : &&interp_0x1cdepr;
     115        7779 :   interp_jump_table[ 0xbc ] = FD_VM_SBPF_EXPLICIT_SIGN_EXT        (sbpf_version) ? &&interp_0xbc : &&interp_0xbcdepr;
     116        7779 :   interp_jump_table[ 0x14 ] = FD_VM_SBPF_SWAP_SUB_REG_IMM_OPERANDS(sbpf_version) ? &&interp_0x14 : &&interp_0x14depr;
     117        7779 :   interp_jump_table[ 0x17 ] = FD_VM_SBPF_SWAP_SUB_REG_IMM_OPERANDS(sbpf_version) ? &&interp_0x17 : &&interp_0x17depr;
     118             : 
     119             :   /* SIMD-0178: static syscalls */
     120        7779 :   interp_jump_table[ 0x85 ] = FD_VM_SBPF_STATIC_SYSCALLS (sbpf_version) ? &&interp_0x85 : &&interp_0x85depr;
     121        7779 :   interp_jump_table[ 0x95 ] = FD_VM_SBPF_STATIC_SYSCALLS (sbpf_version) ? &&interp_0x95 : &&interp_0x9d;
     122        7779 :   interp_jump_table[ 0x9d ] = FD_VM_SBPF_STATIC_SYSCALLS (sbpf_version) ? &&interp_0x9d : &&sigill;
     123             : 
     124             :   /* Unpack the VM state */
     125             : 
     126        7779 :   ulong pc        = vm->pc;
     127        7779 :   ulong ic        = vm->ic;
     128        7779 :   ulong cu        = vm->cu;
     129        7779 :   ulong frame_cnt = vm->frame_cnt;
     130             : 
     131             :   /* FD_VM_INTERP_INSTR_EXEC loads the first word of the instruction at
     132             :      pc, parses it, fetches the associated register values and then
     133             :      jumps to the code that executes the instruction.  On normal
     134             :      instruction execution, the pc will be updated and
     135             :      FD_VM_INTERP_INSTR_EXEC will be invoked again to do the next
     136             :      instruction.  After a normal halt, this will branch to interp_halt.
     137             :      Otherwise, it will branch to the appropriate normal termination. */
     138             : 
     139        7779 :   ulong instr;
     140        7779 :   ulong opcode;
     141        7779 :   ulong dst;
     142        7779 :   ulong src;
     143        7779 :   ulong offset; /* offset is 16-bit but always sign extended, so we handle cast once */
     144        7779 :   uint  imm;
     145        7779 :   ulong reg_dst;
     146        7779 :   ulong reg_src;
     147             : 
     148             : /* These mimic the exact Rust semantics for wrapping_shl and wrapping_shr. */
     149             : 
     150             : /* u64::wrapping_shl: a.unchecked_shl(b & (64 - 1))
     151             : 
     152             :    https://doc.rust-lang.org/std/primitive.u64.html#method.wrapping_shl
     153             :  */
     154        7779 : #define FD_RUST_ULONG_WRAPPING_SHL( a, b ) (a << ( b & ( 63 ) ))
     155             : 
     156             : /* u64::wrapping_shr: a.unchecked_shr(b & (64 - 1))
     157             : 
     158             :    https://doc.rust-lang.org/std/primitive.u64.html#method.wrapping_shr
     159             :  */
     160        7779 : #define FD_RUST_ULONG_WRAPPING_SHR( a, b ) (a >> ( b & ( 63 ) ))
     161             : 
     162             : /* u32::wrapping_shl: a.unchecked_shl(b & (32 - 1))
     163             : 
     164             :    https://doc.rust-lang.org/std/primitive.u32.html#method.wrapping_shl
     165             :  */
     166        7779 : #define FD_RUST_UINT_WRAPPING_SHL( a, b ) (a << ( b & ( 31 ) ))
     167             : 
     168             : /* u32::wrapping_shr: a.unchecked_shr(b & (32 - 1))
     169             : 
     170             :    https://doc.rust-lang.org/std/primitive.u32.html#method.wrapping_shr
     171             :  */
     172        7779 : #define FD_RUST_UINT_WRAPPING_SHR( a, b ) (a >> ( b & ( 31 ) ))
     173             : 
     174             : 
     175        7779 : # define FD_VM_INTERP_INSTR_EXEC                                                                 \
     176      381993 :   if( FD_UNLIKELY( pc>=text_cnt ) ) goto sigtext; /* Note: untaken branches don't consume BTB */ \
     177      381993 :   instr   = text[ pc ];                  /* Guaranteed in-bounds */                              \
     178      381891 :   opcode  = fd_vm_instr_opcode( instr ); /* in [0,256) even if malformed */                      \
     179      381891 :   dst     = fd_vm_instr_dst   ( instr ); /* in [0, 16) even if malformed */                      \
     180      381891 :   src     = fd_vm_instr_src   ( instr ); /* in [0, 16) even if malformed */                      \
     181      381891 :   offset  = fd_vm_instr_offset( instr ); /* in [-2^15,2^15) even if malformed */                 \
     182      381891 :   imm     = fd_vm_instr_imm   ( instr ); /* in [0,2^32) even if malformed */                     \
     183      381891 :   reg_dst = reg[ dst ];                  /* Guaranteed in-bounds */                              \
     184      381891 :   reg_src = reg[ src ];                  /* Guaranteed in-bounds */                              \
     185      381891 :   goto *interp_jump_table[ opcode ]      /* Guaranteed in-bounds */
     186             : 
     187             : /* FD_VM_INTERP_SYSCALL_EXEC
     188             :    (macro to handle the logic of 0x85 pre- and post- SIMD-0178: static syscalls)
     189             : 
     190             :    Setup.
     191             :    Update the vm with the current vm execution state for the
     192             :    syscall.  Note that BRANCH_BEGIN has pc at the syscall and
     193             :    already updated ic and cu to reflect all instructions up to
     194             :    and including the syscall instruction itself.
     195             : 
     196             :    Execution.
     197             :    Do the syscall.  We use ret reduce the risk of the syscall
     198             :    accidentally modifying other registers (note however since a
     199             :    syscall has the vm handle it still do arbitrary modifications
     200             :    to the vm state) and the risk of a pointer escape on reg from
     201             :    inhibiting compiler optimizations (this risk is likely low in
     202             :    as this is the only point in the whole interpreter core that
     203             :    calls outside this translation unit).
     204             :    At this point, vm->cu is positive.
     205             : 
     206             :    Error handling.
     207             :    If we trust syscall implementations to handle the vm state
     208             :    correctly, the below could be implemented as unpacking the vm
     209             :    state and jumping to sigsys on error.  But we provide some
     210             :    extra protection to make various strong guarantees:
     211             : 
     212             :    - We do not let the syscall modify pc currently as nothing
     213             :      requires this and it reduces risk of a syscall bug mucking
     214             :      up the interpreter.  If there ever was a syscall that
     215             :      needed to modify the pc (e.g. a syscall that has execution
     216             :      resume from a different location than the instruction
     217             :      following the syscall), do "pc = vm->pc" below.
     218             : 
     219             :    - We do not let the syscall modify ic currently as nothing
     220             :      requires this and it keeps the ic precise.  If a future
     221             :      syscall needs this, do "ic = vm->ic" below.
     222             : 
     223             :    - We do not let the syscall increase cu as nothing requires
     224             :      this and it guarantees the interpreter will halt in a
     225             :      reasonable finite amount of time.  If a future syscall
     226             :      needs this, do "cu = vm->cu" below.
     227             : 
     228             :    - A syscall that returns SIGCOST is always treated as though
     229             :      it also zerod cu.
     230             : 
     231             :    At this point, vm->cu is whatever the syscall tried to set
     232             :    and cu is positive.
     233             : 
     234             :    Exit
     235             :    At this point, cu is positive and err is clear.
     236             : */
     237        7779 : # define FD_VM_INTERP_SYSCALL_EXEC                                            \
     238             :   /* Setup */                                                                 \
     239        7779 :   vm->pc        = pc;                                                         \
     240           3 :   vm->ic        = ic;                                                         \
     241           3 :   vm->cu        = cu;                                                         \
     242           3 :   vm->frame_cnt = frame_cnt;                                                  \
     243             :   /* Execution */                                                             \
     244           3 :   ulong ret[1];                                                               \
     245           3 :   err = syscall->func( vm, reg[1], reg[2], reg[3], reg[4], reg[5], ret );     \
     246           3 :   reg[0] = ret[0];                                                            \
     247             :   /* Error handling */                                                        \
     248           3 :   ulong cu_req = vm->cu;                                                      \
     249           3 :   cu = fd_ulong_min( cu_req, cu );                                            \
     250           3 :   if( FD_UNLIKELY( err ) ) {                                                  \
     251           0 :     if( err==FD_VM_SYSCALL_ERR_COMPUTE_BUDGET_EXCEEDED ) cu = 0UL; /* cmov */ \
     252           0 :     FD_VM_TEST_ERR_EXISTS( vm );                                              \
     253           0 :     goto sigsyscall;                                                          \
     254           0 :   }                                                                           \
     255             :   /* Exit */
     256             : 
     257             : 
     258             :   /* FD_VM_INTERP_INSTR_BEGIN / FD_VM_INTERP_INSTR_END bracket opcode's
     259             :      implementation for an opcode that does not branch.  On entry, the
     260             :      instruction word has been unpacked into dst / src / offset / imm
     261             :      and reg[dst] / reg[src] has been prefetched into reg_dst / reg_src. */
     262             : 
     263      245250 : # define FD_VM_INTERP_INSTR_BEGIN(opcode) interp_##opcode:
     264             : 
     265             : # ifndef FD_VM_INTERP_EXE_TRACING_ENABLED /* Non-tracing path only, ~0.3% faster in some benchmarks, slower in others but more code footprint */
     266      244926 : # define FD_VM_INTERP_INSTR_END pc++; FD_VM_INTERP_INSTR_EXEC
     267             : # else /* Use this version when tracing or optimizing code footprint */
     268           0 : # define FD_VM_INTERP_INSTR_END pc++; goto interp_exec
     269             : # endif
     270             : 
     271             :   /* Instead of doing a lot of compute budget calcs and tests every
     272             :      instruction, we note that the program counter increases
     273             :      monotonically after a branch (or a program start) until the next
     274             :      branch (or program termination).  We save the program counter of
     275             :      the start of such a segment in pc0.  Whenever we encounter a branch
     276             :      (or a program termination) at pc, we know we processed pc-pc0+1
     277             :      text words (including the text word for the branch instruction
     278             :      itself as all branch instructions are single word).
     279             : 
     280             :      Each instruction costs 1 cu (syscalls can cost extra on top of
     281             :      this that is accounted separately in CALL_IMM below).  Since there
     282             :      could have been multiword instructions in this segment, at start of
     283             :      such a segment, we zero out the accumulator ic_correction and have
     284             :      every multiword instruction in the segment accumulate the number of
     285             :      extra text words it has to this variable.  (Sigh ... it would be a
     286             :      lot simpler to bill based on text words processed but this would be
     287             :      very difficult to make this protocol change at this point.)
     288             : 
     289             :      When we encounter a branch at pc, the number of instructions
     290             :      processed (and thus the number of compute units to bill for that
     291             :      segment) is thus:
     292             : 
     293             :        pc - pc0 + 1 - ic_correction
     294             : 
     295             :      IMPORTANT SAFETY TIP!  This implies the worst case interval before
     296             :      checking the cu budget is the worst case text_cnt.  But since all
     297             :      such instructions are cheap 1 cu instructions and processed fast
     298             :      and text max is limited in size, this should be acceptable in
     299             :      practice.  FIXME: DOUBLE CHECK THE MATH ABOVE AGAINST PROTOCOL
     300             :      LIMITS. */
     301             : 
     302        7779 :   ulong pc0           = pc;
     303        7779 :   ulong ic_correction = 0UL;
     304             : 
     305        7779 : # define FD_VM_INTERP_BRANCH_BEGIN(opcode)                                                              \
     306      135465 :   interp_##opcode:                                                                                      \
     307             :     /* Bill linear text segment and this branch instruction as per the above */                         \
     308      135465 :     ic_correction = pc - pc0 + 1UL - ic_correction;                                                     \
     309      135465 :     ic += ic_correction;                                                                                \
     310      135465 :     if( FD_UNLIKELY( ic_correction>cu ) ) goto sigcost; /* Note: untaken branches don't consume BTB */  \
     311      135465 :     cu -= ic_correction;                                                                                \
     312             :     /* At this point, cu>=0 */                                                                          \
     313      134784 :     ic_correction = 0UL;
     314             : 
     315             :   /* FIXME: debatable if it is better to do pc++ here or have the
     316             :      instruction implementations do it in their code path. */
     317             : 
     318             : # ifndef FD_VM_INTERP_EXE_TRACING_ENABLED /* Non-tracing path only, ~4% faster in some benchmarks, slower in others but more code footprint */
     319             : # define FD_VM_INTERP_BRANCH_END               \
     320      129282 :     pc++;                                      \
     321      129282 :     pc0 = pc; /* Start a new linear segment */ \
     322      129288 :     FD_VM_INTERP_INSTR_EXEC
     323             : # else /* Use this version when tracing or optimizing code footprint */
     324             : # define FD_VM_INTERP_BRANCH_END               \
     325           0 :     pc++;                                      \
     326           0 :     pc0 = pc; /* Start a new linear segment */ \
     327             :     /* FIXME: TEST sigsplit HERE */            \
     328           0 :     goto interp_exec
     329             : # endif
     330             : 
     331             :   /* FD_VM_INTERP_STACK_PUSH pushes reg[6:9] onto the shadow stack and
     332             :      advances reg[10] to a new user stack frame.  If there are no more
     333             :      stack frames available, will do a SIGSTACK. */
     334             : 
     335             :   /* FIXME: double check faulting is desired on stack overflow. */
     336             : 
     337             :   /* FIXME: a pre-belt-sanding FIXME implied the TLB should be updated
     338             :      to prevent byte code from accessing the stack outside its current
     339             :      stack frame.  But this would break the common practice of a
     340             :      function passing a pointer to something on its stack into a
     341             :      function that it calls:
     342             : 
     343             :        void foo( ... ) {
     344             :          ...
     345             :          int ret;
     346             :          bar( &ret );
     347             :          ...
     348             :        }
     349             : 
     350             :      So this probably shouldn't be done.  But, if it is in fact
     351             :      necessary, the TLB updates would be here and in pop. */
     352             : 
     353             :   /* FIXME: unvalidated code mucking with r10 */
     354             : 
     355        7779 : # define FD_VM_INTERP_STACK_PUSH                                                                            \
     356        7779 :   shadow[ frame_cnt ].r6 = reg[6];                                                                          \
     357          42 :   shadow[ frame_cnt ].r7 = reg[7];                                                                          \
     358          42 :   shadow[ frame_cnt ].r8 = reg[8];                                                                          \
     359          42 :   shadow[ frame_cnt ].r9 = reg[9];                                                                          \
     360          42 :   shadow[ frame_cnt ].r10= reg[10];                                                                         \
     361          42 :   shadow[ frame_cnt ].pc = pc;                                                                              \
     362          42 :   if( FD_UNLIKELY( ++frame_cnt>=frame_max ) ) goto sigstack; /* Note: untaken branches don't consume BTB */ \
     363          42 :   if( !FD_VM_SBPF_DYNAMIC_STACK_FRAMES( sbpf_version ) ) reg[10] += vm->stack_frame_size;
     364             : 
     365             :   /* We subtract the heap cost in the BPF loader */
     366             : 
     367        7779 :   goto interp_exec; /* Silly but to avoid unused label warning in some configurations */
     368        7779 : interp_exec:
     369             : 
     370             : # ifdef FD_VM_INTERP_EXE_TRACING_ENABLED
     371             :   /* Note: when tracing or optimizing for code footprint, all
     372             :      instruction execution starts here such that this is only point
     373             :      where exe tracing diagnostics are needed. */
     374           0 :   if( FD_UNLIKELY( pc>=text_cnt ) ) goto sigtext;
     375           0 :   fd_vm_trace_event_exe( vm->trace, pc, ic + ( pc - pc0 - ic_correction ), cu, reg, vm->text + pc, vm->text_cnt - pc, ic_correction, frame_cnt );
     376           0 : # endif
     377             : 
     378        7779 :   FD_VM_INTERP_INSTR_EXEC;
     379             : 
     380             :   /* 0x00 - 0x0f ******************************************************/
     381             : 
     382             :   FD_VM_INTERP_INSTR_BEGIN(0x04) /* FD_SBPF_OP_ADD_IMM */
     383          36 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst + (int)imm );
     384          36 :   FD_VM_INTERP_INSTR_END;
     385             : 
     386             :   FD_VM_INTERP_INSTR_BEGIN(0x04depr) /* FD_SBPF_OP_ADD_IMM deprecated SIMD-0174 */
     387          45 :     reg[ dst ] = (ulong)(long)( (int)reg_dst + (int)imm );
     388          45 :   FD_VM_INTERP_INSTR_END;
     389             : 
     390             :   FD_VM_INTERP_BRANCH_BEGIN(0x05) /* FD_SBPF_OP_JA */
     391         633 :     pc += offset;
     392         633 :   FD_VM_INTERP_BRANCH_END;
     393             : 
     394             :   FD_VM_INTERP_INSTR_BEGIN(0x07) /* FD_SBPF_OP_ADD64_IMM */
     395       30108 :     reg[ dst ] = reg_dst + (ulong)(long)(int)imm;
     396       30108 :   FD_VM_INTERP_INSTR_END;
     397             : 
     398             :   FD_VM_INTERP_INSTR_BEGIN(0x0c) /* FD_SBPF_OP_ADD_REG */
     399          33 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst + (int)reg_src );
     400          33 :   FD_VM_INTERP_INSTR_END;
     401             : 
     402             :   FD_VM_INTERP_INSTR_BEGIN(0x0cdepr) /* FD_SBPF_OP_ADD_REG deprecated SIMD-0174 */
     403          39 :     reg[ dst ] = (ulong)(long)( (int)reg_dst + (int)reg_src );
     404          39 :   FD_VM_INTERP_INSTR_END;
     405             : 
     406             :   FD_VM_INTERP_INSTR_BEGIN(0x0f) /* FD_SBPF_OP_ADD64_REG */
     407          78 :     reg[ dst ] = reg_dst + reg_src;
     408          78 :   FD_VM_INTERP_INSTR_END;
     409             : 
     410             :   /* 0x10 - 0x1f ******************************************************/
     411             : 
     412             :   FD_VM_INTERP_INSTR_BEGIN(0x14) /* FD_SBPF_OP_SUB_IMM */
     413          36 :     reg[ dst ] = (ulong)(uint)( (int)imm - (int)reg_dst );
     414          36 :   FD_VM_INTERP_INSTR_END;
     415             : 
     416             :   FD_VM_INTERP_INSTR_BEGIN(0x14depr) /* FD_SBPF_OP_SUB_IMM deprecated SIMD-0174 */
     417          39 :     reg[ dst ] = (ulong)(long)( (int)reg_dst - (int)imm );
     418          39 :   FD_VM_INTERP_INSTR_END;
     419             : 
     420             :   FD_VM_INTERP_BRANCH_BEGIN(0x15) /* FD_SBPF_OP_JEQ_IMM */
     421        1242 :     pc += fd_ulong_if( reg_dst==(ulong)(long)(int)imm, offset, 0UL );
     422        1242 :   FD_VM_INTERP_BRANCH_END;
     423             : 
     424             :   FD_VM_INTERP_INSTR_BEGIN(0x17) /* FD_SBPF_OP_SUB64_IMM */
     425          33 :     reg[ dst ] = (ulong)(long)(int)imm - reg_dst;
     426          33 :   FD_VM_INTERP_INSTR_END;
     427             : 
     428             :   FD_VM_INTERP_INSTR_BEGIN(0x17depr) /* FD_SBPF_OP_SUB64_IMM deprecated SIMD-0174 */
     429          36 :     reg[ dst ] = reg_dst - (ulong)(long)(int)imm;
     430          36 :   FD_VM_INTERP_INSTR_END;
     431             : 
     432             :   FD_VM_INTERP_INSTR_BEGIN(0x18) /* FD_SBPF_OP_LDQ */
     433         117 :     pc++;
     434         117 :     ic_correction++;
     435             :     /* No need to check pc because it's already checked during validation.
     436             :        if( FD_UNLIKELY( pc>=text_cnt ) ) goto sigsplit; // Note: untaken branches don't consume BTB */
     437         117 :     reg[ dst ] = (ulong)((ulong)imm | ((ulong)fd_vm_instr_imm( text[ pc ] ) << 32));
     438         117 :   FD_VM_INTERP_INSTR_END;
     439             : 
     440             :   FD_VM_INTERP_INSTR_BEGIN(0x1c) /* FD_SBPF_OP_SUB_REG */
     441          36 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst - (int)reg_src );
     442          36 :   FD_VM_INTERP_INSTR_END;
     443             : 
     444             :   FD_VM_INTERP_INSTR_BEGIN(0x1cdepr) /* FD_SBPF_OP_SUB_REG deprecated SIMD-0174 */
     445          39 :     reg[ dst ] = (ulong)(long)( (int)reg_dst - (int)reg_src );
     446          39 :   FD_VM_INTERP_INSTR_END;
     447             : 
     448             :   FD_VM_INTERP_BRANCH_BEGIN(0x1d) /* FD_SBPF_OP_JEQ_REG */
     449         642 :     pc += fd_ulong_if( reg_dst==reg_src, offset, 0UL );
     450         642 :   FD_VM_INTERP_BRANCH_END;
     451             : 
     452             :   FD_VM_INTERP_INSTR_BEGIN(0x1f) /* FD_SBPF_OP_SUB64_REG */
     453       30093 :     reg[ dst ] = reg_dst - reg_src;
     454       30093 :   FD_VM_INTERP_INSTR_END;
     455             : 
     456             :   /* 0x20 - 0x2f ******************************************************/
     457             : 
     458             :   FD_VM_INTERP_INSTR_BEGIN(0x24) /* FD_SBPF_OP_MUL_IMM */
     459          42 :     reg[ dst ] = (ulong)(long)( (int)reg_dst * (int)imm );
     460          42 :   FD_VM_INTERP_INSTR_END;
     461             : 
     462             :   FD_VM_INTERP_BRANCH_BEGIN(0x25) /* FD_SBPF_OP_JGT_IMM */
     463        3096 :     pc += fd_ulong_if( reg_dst>(ulong)(long)(int)imm, offset, 0UL );
     464        3096 :   FD_VM_INTERP_BRANCH_END;
     465             : 
     466           9 :   FD_VM_INTERP_INSTR_BEGIN(0x27) { /* FD_SBPF_OP_STB */
     467           9 :     uchar is_multi_region = 0;
     468           9 :     ulong vaddr           = reg_dst + offset;
     469           9 :     ulong haddr           = fd_vm_mem_haddr( vm, vaddr, sizeof(uchar), region_haddr, region_st_sz, 1, 0UL, &is_multi_region );
     470           9 :     if( FD_UNLIKELY( !haddr ) ) { vm->segv_store_vaddr = vaddr; goto sigsegv; } /* Note: untaken branches don't consume BTB */
     471           3 :     fd_vm_mem_st_1( haddr, (uchar)imm );
     472           3 :   }
     473           3 :   FD_VM_INTERP_INSTR_END;
     474             : 
     475          78 :   FD_VM_INTERP_INSTR_BEGIN(0x2c) { /* FD_SBPF_OP_LDXB */
     476          78 :     uchar is_multi_region = 0;
     477          78 :     ulong vaddr           = reg_src + offset;
     478          78 :     ulong haddr           = fd_vm_mem_haddr( vm, vaddr, sizeof(uchar), region_haddr, region_ld_sz, 0, 0UL, &is_multi_region );
     479          78 :     if( FD_UNLIKELY( !haddr ) ) goto sigsegv; /* Note: untaken branches don't consume BTB */
     480          54 :     reg[ dst ] = fd_vm_mem_ld_1( haddr );
     481          54 :   }
     482          54 :   FD_VM_INTERP_INSTR_END;
     483             : 
     484             :   FD_VM_INTERP_BRANCH_BEGIN(0x2d) /* FD_SBPF_OP_JGT_REG */
     485        3087 :     pc += fd_ulong_if( reg_dst>reg_src, offset, 0UL );
     486        3087 :   FD_VM_INTERP_BRANCH_END;
     487             : 
     488           9 :   FD_VM_INTERP_INSTR_BEGIN(0x2f) { /* FD_SBPF_OP_STXB */
     489           9 :     uchar is_multi_region = 0;
     490           9 :     ulong vaddr           = reg_dst + offset;
     491           9 :     ulong haddr           = fd_vm_mem_haddr( vm, vaddr, sizeof(uchar), region_haddr, region_st_sz, 1, 0UL, &is_multi_region );
     492           9 :     if( FD_UNLIKELY( !haddr ) ) { vm->segv_store_vaddr = vaddr; goto sigsegv; } /* Note: untaken branches don't consume BTB */ /* FIXME: sigrdonly */
     493           3 :     fd_vm_mem_st_1( haddr, (uchar)reg_src );
     494           3 :   }
     495           3 :   FD_VM_INTERP_INSTR_END;
     496             : 
     497             :   FD_VM_INTERP_INSTR_BEGIN(0x27depr) /* FD_SBPF_OP_MUL64_IMM */
     498          42 :     reg[ dst ] = (ulong)( (long)reg_dst * (long)(int)imm );
     499          42 :   FD_VM_INTERP_INSTR_END;
     500             : 
     501             :   FD_VM_INTERP_INSTR_BEGIN(0x2cdepr) /* FD_SBPF_OP_MUL_REG */
     502          39 :     reg[ dst ] = (ulong)(long)( (int)reg_dst * (int)reg_src );
     503          39 :   FD_VM_INTERP_INSTR_END;
     504             : 
     505             :   FD_VM_INTERP_INSTR_BEGIN(0x2fdepr) /* FD_SBPF_OP_MUL64_REG */
     506       30078 :     reg[ dst ] = reg_dst * reg_src;
     507       30078 :   FD_VM_INTERP_INSTR_END;
     508             : 
     509             :   /* 0x30 - 0x3f ******************************************************/
     510             : 
     511             :   FD_VM_INTERP_INSTR_BEGIN(0x34) /* FD_SBPF_OP_DIV_IMM */
     512          42 :     /* FIXME: convert to a multiply at validation time (usually probably
     513          42 :        not worth it) */
     514          42 :     reg[ dst ] = (ulong)((uint)reg_dst / imm);
     515          42 :   FD_VM_INTERP_INSTR_END;
     516             : 
     517             :   FD_VM_INTERP_BRANCH_BEGIN(0x35) /* FD_SBPF_OP_JGE_IMM */
     518        6063 :     pc += fd_ulong_if( reg_dst>=(ulong)(long)(int)imm, offset, 0UL );
     519        6063 :   FD_VM_INTERP_BRANCH_END;
     520             : 
     521             :   FD_VM_INTERP_INSTR_BEGIN(0x36) /* FD_SBPF_OP_UHMUL64_IMM */
     522           3 :     reg[ dst ] = (ulong)(( (uint128)reg_dst * (uint128)(ulong)imm ) >> 64 );
     523           3 :   FD_VM_INTERP_INSTR_END;
     524             : 
     525           9 :   FD_VM_INTERP_INSTR_BEGIN(0x37) { /* FD_SBPF_OP_STH */
     526           9 :     uchar is_multi_region = 0;
     527           9 :     ulong vaddr           = reg_dst + offset;
     528           9 :     ulong haddr           = fd_vm_mem_haddr( vm, vaddr, sizeof(ushort), region_haddr, region_st_sz, 1, 0UL, &is_multi_region );
     529           9 :     int   sigsegv         = !haddr;
     530           9 :     if( FD_UNLIKELY( sigsegv ) ) {
     531           6 :       vm->segv_store_vaddr = vaddr;
     532             : 
     533           6 :       if( vm->direct_mapping ) {
     534             :         /* Only execute slow path partial store when direct mapping is enabled.
     535             :            Note that Agave implements direct mapping as an UnalignedMemoryMapping.
     536             :            When account memory regions are not aligned, there are edge cases that require
     537             :            the slow path partial store.
     538             :            https://github.com/anza-xyz/sbpf/blob/410a627313124252ab1abbd3a3b686c03301bb2a/src/memory_region.rs#L388-L419 */
     539           0 :         ushort val = (ushort)imm;
     540           0 :         fd_vm_mem_st_try( vm, vaddr, sizeof(ushort), (uchar*)&val );
     541           0 :       }
     542             : 
     543           6 :       goto sigsegv;
     544           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     545           3 :     fd_vm_mem_st_2( vm, vaddr, haddr, (ushort)imm, is_multi_region );
     546           3 :   }
     547           3 :   FD_VM_INTERP_INSTR_END;
     548             : 
     549          96 :   FD_VM_INTERP_INSTR_BEGIN(0x3c) { /* FD_SBPF_OP_LDXH */
     550          96 :     uchar is_multi_region = 0;
     551          96 :     ulong vaddr           = reg_src + offset;
     552          96 :     ulong haddr           = fd_vm_mem_haddr( vm, vaddr, sizeof(ushort), region_haddr, region_ld_sz, 0, 0UL, &is_multi_region );
     553          96 :     int   sigsegv         = !haddr;
     554          96 :     if( FD_UNLIKELY( sigsegv ) ) goto sigsegv; /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     555          72 :     reg[ dst ] = fd_vm_mem_ld_2( vm, vaddr, haddr, is_multi_region );
     556          72 :   }
     557          72 :   FD_VM_INTERP_INSTR_END;
     558             : 
     559             :   FD_VM_INTERP_BRANCH_BEGIN(0x3d) /* FD_SBPF_OP_JGE_REG */
     560       35478 :     pc += fd_ulong_if( reg_dst>=reg_src, offset, 0UL );
     561       35478 :   FD_VM_INTERP_BRANCH_END;
     562             : 
     563           9 :   FD_VM_INTERP_INSTR_BEGIN(0x3f) { /* FD_SBPF_OP_STXH */
     564           9 :     uchar is_multi_region = 0;
     565           9 :     ulong vaddr           = reg_dst + offset;
     566           9 :     ulong haddr           = fd_vm_mem_haddr( vm, vaddr, sizeof(ushort), region_haddr, region_st_sz, 1, 0UL, &is_multi_region );
     567           9 :     int   sigsegv         = !haddr;
     568           9 :     if( FD_UNLIKELY( sigsegv ) ) {
     569           6 :       vm->segv_store_vaddr = vaddr;
     570             : 
     571           6 :       if( vm->direct_mapping ) {
     572             :         /* See FD_SBPF_OP_STH for details */
     573           0 :         ushort val = (ushort)reg_src;
     574           0 :         fd_vm_mem_st_try( vm, vaddr, sizeof(ushort), (uchar*)&val );
     575           0 :       }
     576             : 
     577           6 :       goto sigsegv;
     578           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     579           3 :     fd_vm_mem_st_2( vm, vaddr, haddr, (ushort)reg_src, is_multi_region );
     580           3 :   }
     581           3 :   FD_VM_INTERP_INSTR_END;
     582             : 
     583             :   FD_VM_INTERP_INSTR_BEGIN(0x3e) /* FD_SBPF_OP_UHMUL64_REG */
     584           3 :     reg[ dst ] = (ulong)(( (uint128)reg_dst * (uint128)reg_src ) >> 64 );
     585           3 :   FD_VM_INTERP_INSTR_END;
     586             : 
     587             :   FD_VM_INTERP_INSTR_BEGIN(0x37depr) /* FD_SBPF_OP_DIV64_IMM */
     588          45 :     reg[ dst ] = reg_dst / (ulong)(long)(int)imm;
     589          45 :   FD_VM_INTERP_INSTR_END;
     590             : 
     591             :   FD_VM_INTERP_INSTR_BEGIN(0x3cdepr) /* FD_SBPF_OP_DIV_REG */
     592          57 :     if( FD_UNLIKELY( !(uint)reg_src ) ) goto sigfpe;
     593          42 :     reg[ dst ] = (ulong)((uint)reg_dst / (uint)reg_src);
     594          42 :   FD_VM_INTERP_INSTR_END;
     595             : 
     596             :   FD_VM_INTERP_INSTR_BEGIN(0x3fdepr) /* FD_SBPF_OP_DIV64_REG */
     597       30072 :     if( FD_UNLIKELY( !reg_src ) ) goto sigfpe;
     598       30060 :     reg[ dst ] = reg_dst / reg_src;
     599       30060 :   FD_VM_INTERP_INSTR_END;
     600             : 
     601             :   /* 0x40 - 0x4f ******************************************************/
     602             : 
     603             :   FD_VM_INTERP_INSTR_BEGIN(0x44) /* FD_SBPF_OP_OR_IMM */
     604          51 :     reg[ dst ] = (ulong)( (uint)reg_dst | imm );
     605          51 :   FD_VM_INTERP_INSTR_END;
     606             : 
     607             :   FD_VM_INTERP_BRANCH_BEGIN(0x45) /* FD_SBPF_OP_JSET_IMM */
     608        1254 :     pc += fd_ulong_if( !!(reg_dst & (ulong)(long)(int)imm), offset, 0UL );
     609        1254 :   FD_VM_INTERP_BRANCH_END;
     610             : 
     611             :   FD_VM_INTERP_INSTR_BEGIN(0x46) /* FD_SBPF_OP_UDIV32_IMM */
     612          39 :     reg[ dst ] = (ulong)( (uint)reg_dst / (uint)imm );
     613          39 :   FD_VM_INTERP_INSTR_END;
     614             : 
     615             :   FD_VM_INTERP_INSTR_BEGIN(0x47) /* FD_SBPF_OP_OR64_IMM */
     616          51 :     reg[ dst ] = reg_dst | (ulong)(long)(int)imm;
     617          51 :   FD_VM_INTERP_INSTR_END;
     618             : 
     619             :   FD_VM_INTERP_INSTR_BEGIN(0x4c) /* FD_SBPF_OP_OR_REG */
     620          57 :     reg[ dst ] = (ulong)(uint)( reg_dst | reg_src );
     621          57 :   FD_VM_INTERP_INSTR_END;
     622             : 
     623             :   FD_VM_INTERP_BRANCH_BEGIN(0x4d) /* FD_SBPF_OP_JSET_REG */
     624         657 :     pc += fd_ulong_if( !!(reg_dst & reg_src), offset, 0UL );
     625         657 :   FD_VM_INTERP_BRANCH_END;
     626             : 
     627             :   FD_VM_INTERP_INSTR_BEGIN(0x4e) /* FD_SBPF_OP_UDIV32_REG */
     628          48 :     if( FD_UNLIKELY( !(uint)reg_src ) ) goto sigfpe;
     629          36 :     reg[ dst ] = (ulong)( (uint)reg_dst / (uint)reg_src );
     630          36 :   FD_VM_INTERP_INSTR_END;
     631             : 
     632             :   FD_VM_INTERP_INSTR_BEGIN(0x4f) /* FD_SBPF_OP_OR64_REG */
     633          57 :     reg[ dst ] = reg_dst | reg_src;
     634          57 :   FD_VM_INTERP_INSTR_END;
     635             : 
     636             :   /* 0x50 - 0x5f ******************************************************/
     637             : 
     638             :   FD_VM_INTERP_INSTR_BEGIN(0x54) /* FD_SBPF_OP_AND_IMM */
     639          54 :     reg[ dst ] = (ulong)( (uint)reg_dst & imm );
     640          54 :   FD_VM_INTERP_INSTR_END;
     641             : 
     642             :   FD_VM_INTERP_BRANCH_BEGIN(0x55) /* FD_SBPF_OP_JNE_IMM */
     643       30663 :     pc += fd_ulong_if( reg_dst!=(ulong)(long)(int)imm, offset, 0UL );
     644       30663 :   FD_VM_INTERP_BRANCH_END;
     645             : 
     646             :   FD_VM_INTERP_INSTR_BEGIN(0x56) /* FD_SBPF_OP_UDIV64_IMM */
     647          39 :     reg[ dst ] = reg_dst / (ulong)imm;
     648          39 :   FD_VM_INTERP_INSTR_END;
     649             : 
     650             :   FD_VM_INTERP_INSTR_BEGIN(0x57) /* FD_SBPF_OP_AND64_IMM */
     651          63 :     reg[ dst ] = reg_dst & (ulong)(long)(int)imm;
     652          63 :   FD_VM_INTERP_INSTR_END;
     653             : 
     654             :   FD_VM_INTERP_INSTR_BEGIN(0x5c) /* FD_SBPF_OP_AND_REG */
     655          60 :     reg[ dst ] = (ulong)(uint)( reg_dst & reg_src );
     656          60 :   FD_VM_INTERP_INSTR_END;
     657             : 
     658             :   FD_VM_INTERP_BRANCH_BEGIN(0x5d) /* FD_SBPF_OP_JNE_REG */
     659         651 :     pc += fd_ulong_if( reg_dst!=reg_src, offset, 0UL );
     660         651 :   FD_VM_INTERP_BRANCH_END;
     661             : 
     662             :   FD_VM_INTERP_INSTR_BEGIN(0x5e) /* FD_SBPF_OP_UDIV64_REG */
     663          45 :     if( FD_UNLIKELY( !reg_src ) ) goto sigfpe;
     664          36 :     reg[ dst ] = reg_dst / reg_src;
     665          36 :   FD_VM_INTERP_INSTR_END;
     666             : 
     667             :   FD_VM_INTERP_INSTR_BEGIN(0x5f) /* FD_SBPF_OP_AND64_REG */
     668          48 :     reg[ dst ] = reg_dst & reg_src;
     669          48 :   FD_VM_INTERP_INSTR_END;
     670             : 
     671             :   /* 0x60 - 0x6f ******************************************************/
     672             : 
     673             :   /* FIXME: CHECK THE CU COST MODEL FOR THESE (IS IT LIKE
     674             :      FD_VM_CONSUME_MEM AND NOT JUST FIXED) */
     675             :   /* FIXME: MEM TRACING DIAGNOSTICS GO IN HERE */
     676             : 
     677             :   FD_VM_INTERP_INSTR_BEGIN(0x64) /* FD_SBPF_OP_LSH_IMM */
     678         453 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L291 */
     679         453 :     reg[ dst ] = (ulong)( FD_RUST_UINT_WRAPPING_SHL( (uint)reg_dst, (uint)imm ) );
     680         453 :   FD_VM_INTERP_INSTR_END;
     681             : 
     682             :   FD_VM_INTERP_BRANCH_BEGIN(0x65) /* FD_SBPF_OP_JSGT_IMM */
     683        3666 :     pc += fd_ulong_if( (long)reg_dst>(long)(int)imm, offset, 0UL );
     684        3666 :   FD_VM_INTERP_BRANCH_END;
     685             : 
     686             :   FD_VM_INTERP_INSTR_BEGIN(0x66) /* FD_SBPF_OP_UREM32_IMM */
     687          39 :     reg[ dst ] = (ulong)( (uint)reg_dst % (uint)imm );
     688          39 :   FD_VM_INTERP_INSTR_END;
     689             : 
     690             :   FD_VM_INTERP_INSTR_BEGIN(0x67) /* FD_SBPF_OP_LSH64_IMM */
     691         450 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L376 */
     692         450 :     reg[ dst ] = FD_RUST_ULONG_WRAPPING_SHL( reg_dst, imm );
     693         450 :   FD_VM_INTERP_INSTR_END;
     694             : 
     695             :   FD_VM_INTERP_INSTR_BEGIN(0x6c) /* FD_SBPF_OP_LSH_REG */
     696         447 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L292 */
     697         447 :     reg[ dst ] = (ulong)( FD_RUST_UINT_WRAPPING_SHL( (uint)reg_dst, reg_src ) );
     698         447 :   FD_VM_INTERP_INSTR_END;
     699             : 
     700             :   FD_VM_INTERP_BRANCH_BEGIN(0x6d) /* FD_SBPF_OP_JSGT_REG */
     701        3078 :     pc += fd_ulong_if( (long)reg_dst>(long)reg_src, offset, 0UL );
     702        3078 :   FD_VM_INTERP_BRANCH_END;
     703             : 
     704             :   FD_VM_INTERP_INSTR_BEGIN(0x6e) /* FD_SBPF_OP_UREM32_REG */
     705          48 :     if( FD_UNLIKELY( !(uint)reg_src ) ) goto sigfpe;
     706          36 :     reg[ dst ] = (ulong)( (uint)reg_dst % (uint)reg_src );
     707          36 :   FD_VM_INTERP_INSTR_END;
     708             : 
     709             :   FD_VM_INTERP_INSTR_BEGIN(0x6f) /* FD_SBPF_OP_LSH64_REG */
     710           9 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L377 */
     711           9 :     reg[ dst ] = FD_RUST_ULONG_WRAPPING_SHL( reg_dst, reg_src );
     712           9 :   FD_VM_INTERP_INSTR_END;
     713             : 
     714             :   /* 0x70 - 0x7f ******************************************************/
     715             : 
     716             :   FD_VM_INTERP_INSTR_BEGIN(0x74) /* FD_SBPF_OP_RSH_IMM */
     717           9 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L293 */
     718           9 :     reg[ dst ] = (ulong)( FD_RUST_UINT_WRAPPING_SHR( (uint)reg_dst, imm ) );
     719           9 :   FD_VM_INTERP_INSTR_END;
     720             : 
     721             :   FD_VM_INTERP_BRANCH_BEGIN(0x75) /* FD_SBPF_OP_JSGE_IMM */
     722        6648 :     pc += fd_ulong_if( (long)reg_dst>=(long)(int)imm, offset, 0UL );
     723        6648 :   FD_VM_INTERP_BRANCH_END;
     724             : 
     725             :   FD_VM_INTERP_INSTR_BEGIN(0x76) /* FD_SBPF_OP_UREM64_IMM */
     726          39 :     reg[ dst ] = reg_dst % (ulong)imm;
     727          39 :   FD_VM_INTERP_INSTR_END;
     728             : 
     729             :   FD_VM_INTERP_INSTR_BEGIN(0x77) /* FD_SBPF_OP_RSH64_IMM */
     730          12 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L378 */
     731          12 :     reg[ dst ] = FD_RUST_ULONG_WRAPPING_SHR( reg_dst, imm );
     732          12 :   FD_VM_INTERP_INSTR_END;
     733             : 
     734             :   FD_VM_INTERP_INSTR_BEGIN(0x7c) /* FD_SBPF_OP_RSH_REG */
     735           9 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L294 */
     736           9 :     reg[ dst ] = (ulong)( FD_RUST_UINT_WRAPPING_SHR( (uint)reg_dst, (uint)reg_src ) );
     737           9 :   FD_VM_INTERP_INSTR_END;
     738             : 
     739             :   FD_VM_INTERP_BRANCH_BEGIN(0x7d) /* FD_SBPF_OP_JSGE_REG */
     740        5454 :     pc += fd_ulong_if( (long)reg_dst>=(long)reg_src, offset, 0UL );
     741        5454 :   FD_VM_INTERP_BRANCH_END;
     742             : 
     743             :   FD_VM_INTERP_INSTR_BEGIN(0x7e) /* FD_SBPF_OP_UREM64_REG */
     744          45 :     if( FD_UNLIKELY( !reg_src ) ) goto sigfpe;
     745          36 :     reg[ dst ] = reg_dst % reg_src;
     746          36 :   FD_VM_INTERP_INSTR_END;
     747             : 
     748             :   FD_VM_INTERP_INSTR_BEGIN(0x7f) /* FD_SBPF_OP_RSH64_REG */
     749           9 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L379 */
     750           9 :     reg[ dst ] = FD_RUST_ULONG_WRAPPING_SHR( reg_dst, reg_src );
     751           9 :   FD_VM_INTERP_INSTR_END;
     752             : 
     753             :   /* 0x80-0x8f ********************************************************/
     754             : 
     755             :   FD_VM_INTERP_INSTR_BEGIN(0x84) /* FD_SBPF_OP_NEG */
     756           3 :     reg[ dst ] = (ulong)( -(uint)reg_dst );
     757           3 :   FD_VM_INTERP_INSTR_END;
     758             : 
     759             :   FD_VM_INTERP_BRANCH_BEGIN(0x85) /* FD_SBPF_OP_CALL_IMM */
     760           0 :     /* imm has already been validated */
     761           0 :     FD_VM_INTERP_STACK_PUSH;
     762           0 :     pc = (ulong)( (long)pc + (long)(int)imm );
     763           0 :   FD_VM_INTERP_BRANCH_END;
     764             : 
     765           9 :   FD_VM_INTERP_BRANCH_BEGIN(0x85depr) { /* FD_SBPF_OP_CALL_IMM */
     766             : 
     767           9 :     fd_sbpf_syscalls_t const * syscall = imm!=fd_sbpf_syscalls_key_null() ? fd_sbpf_syscalls_query_const( syscalls, imm, NULL ) : NULL;
     768           9 :     if( FD_UNLIKELY( !syscall ) ) { /* Optimize for the syscall case */
     769             : 
     770             :       /* Note we do the stack push before updating the pc(*). This implies
     771             :        that the call stack frame gets allocated _before_ checking if the
     772             :        call target is valid.  It would be fine to switch the order
     773             :        though such would change the precise faulting semantics of
     774             :        sigcall and sigstack.
     775             : 
     776             :        (*)but after checking calldests, see point below. */
     777             : 
     778             :       /* Agave's order of checks
     779             :          (https://github.com/solana-labs/rbpf/blob/v0.8.5/src/interpreter.rs#L486):
     780             :           1. Lookup imm hash in FunctionRegistry (calldests_test is our equivalent)
     781             :           2. Push stack frame
     782             :           3. Check PC
     783             :           4. Update PC
     784             : 
     785             :           Following this precisely is impossible as our PC check also
     786             :           serves as a bounds check for the calldests_test call. So we
     787             :           have to perform step 3 before step 1. The following
     788             :           is a best-effort implementation that should match the VM state
     789             :           in all ways except error code. */
     790             : 
     791             :       /* Special case to handle entrypoint.
     792             :          ebpf::hash_symbol_name(b"entrypoint") = 0xb00c380, and
     793             :          fd_pchash_inverse( 0xb00c380U ) = 0x71e3cf81U */
     794           6 :       if( FD_UNLIKELY( imm==0x71e3cf81U ) ) {
     795           0 :         FD_VM_INTERP_STACK_PUSH;
     796           0 :         pc = entry_pc - 1;
     797           6 :       } else {
     798             : 
     799           6 :         ulong target_pc = (ulong)fd_pchash_inverse( imm );
     800           6 :         if( FD_UNLIKELY( target_pc>text_cnt ) ) {
     801             :           /* ...to match state of Agave VM when faulting
     802             :              Note: this check MUST be BEFORE fd_sbpf_calldests_test,
     803             :              because it prevents overflowing calldests. */
     804           6 :           goto sigcall;
     805           6 :         }
     806             : 
     807           0 :         if( FD_UNLIKELY( !fd_sbpf_calldests_test( calldests, target_pc ) ) ) {
     808           0 :           goto sigcall;
     809           0 :         }
     810             : 
     811           0 :         FD_VM_INTERP_STACK_PUSH;
     812           0 :         pc = target_pc - 1;
     813           0 :       }
     814             : 
     815           6 :     } else {
     816             : 
     817           3 :       FD_VM_INTERP_SYSCALL_EXEC;
     818             : 
     819           3 :     }
     820           9 :   } FD_VM_INTERP_BRANCH_END;
     821             : 
     822             :   FD_VM_INTERP_INSTR_BEGIN(0x86) /* FD_SBPF_OP_LMUL32_IMM */
     823          39 :     reg[ dst ] = (ulong)( (uint)reg_dst * imm );
     824          39 :   FD_VM_INTERP_INSTR_END;
     825             : 
     826           9 :   FD_VM_INTERP_INSTR_BEGIN(0x87) { /* FD_SBPF_OP_STW */
     827           9 :     uchar is_multi_region = 0;
     828           9 :     ulong vaddr           = reg_dst + offset;
     829           9 :     ulong haddr           = fd_vm_mem_haddr( vm, vaddr, sizeof(uint), region_haddr, region_st_sz, 1, 0UL, &is_multi_region );
     830           9 :     int   sigsegv         = !haddr;
     831           9 :     if( FD_UNLIKELY( sigsegv ) ) {
     832           6 :       vm->segv_store_vaddr = vaddr;
     833             : 
     834           6 :       if( vm->direct_mapping ) {
     835             :         /* See FD_SBPF_OP_STH for details */
     836           0 :         uint val = (uint)imm;
     837           0 :         fd_vm_mem_st_try( vm, vaddr, sizeof(uint), (uchar*)&val );
     838           0 :       }
     839             : 
     840           6 :       goto sigsegv;
     841           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     842           3 :     fd_vm_mem_st_4( vm, vaddr, haddr, imm, is_multi_region );
     843           3 :   } FD_VM_INTERP_INSTR_END;
     844             : 
     845             :   FD_VM_INTERP_INSTR_BEGIN(0x87depr) /* FD_SBPF_OP_NEG64 deprecated */
     846           3 :     reg[ dst ] = -reg_dst;
     847           3 :   FD_VM_INTERP_INSTR_END;
     848             : 
     849         108 :   FD_VM_INTERP_INSTR_BEGIN(0x8c) { /* FD_SBPF_OP_LDXW */
     850         108 :     uchar is_multi_region = 0;
     851         108 :     ulong vaddr           = reg_src + offset;
     852         108 :     ulong haddr           = fd_vm_mem_haddr( vm, vaddr, sizeof(uint), region_haddr, region_ld_sz, 0, 0UL, &is_multi_region );
     853         108 :     int   sigsegv         = !haddr;
     854         108 :     if( FD_UNLIKELY( sigsegv ) ) goto sigsegv; /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     855          84 :     reg[ dst ] = fd_vm_mem_ld_4( vm, vaddr, haddr, is_multi_region );
     856          84 :   }
     857          84 :   FD_VM_INTERP_INSTR_END;
     858             : 
     859          84 :   FD_VM_INTERP_BRANCH_BEGIN(0x8d) { /* FD_SBPF_OP_CALL_REG */
     860             : 
     861          21 :     FD_VM_INTERP_STACK_PUSH;
     862             : 
     863          21 :     ulong vaddr = reg_src;
     864             : 
     865             :     /* Notes: Agave checks region and target_pc before updating the pc.
     866             :        To match their state, we do the same, even though we could simply
     867             :        update the pc and let BRANCH_END fail.
     868             :        Also, Agave doesn't check alignment. */
     869             : 
     870          21 :     ulong region = vaddr >> 32;
     871             :     /* ulong align  = vaddr & 7UL; */
     872          21 :     ulong target_pc = ((vaddr & FD_VM_OFFSET_MASK)/8UL) - text_word_off;
     873          21 :     if( FD_UNLIKELY( (region!=1UL) | (target_pc>=text_cnt) ) ) goto sigtextbr; /* Note: untaken branches don't consume BTB */
     874           0 :     pc = target_pc - 1;
     875             : 
     876           0 :   } FD_VM_INTERP_BRANCH_END;
     877             : 
     878          21 :   FD_VM_INTERP_BRANCH_BEGIN(0x8ddepr) { /* FD_SBPF_OP_CALL_REG */
     879             : 
     880          21 :     FD_VM_INTERP_STACK_PUSH;
     881             : 
     882          21 :     ulong vaddr = reg[ imm & 15U ];
     883             : 
     884             :     /* Notes: Agave checks region and target_pc before updating the pc.
     885             :        To match their state, we do the same, even though we could simply
     886             :        update the pc and let BRANCH_END fail.
     887             :        Also, Agave doesn't check alignment. */
     888             : 
     889          21 :     ulong region = vaddr >> 32;
     890             :     /* ulong align  = vaddr & 7UL; */
     891          21 :     ulong target_pc = ((vaddr & FD_VM_OFFSET_MASK)/8UL) - text_word_off;
     892          21 :     if( FD_UNLIKELY( (region!=1UL) | (target_pc>=text_cnt) ) ) goto sigtextbr; /* Note: untaken branches don't consume BTB */
     893           0 :     pc = target_pc - 1;
     894             : 
     895           0 :   } FD_VM_INTERP_BRANCH_END;
     896             : 
     897             :   FD_VM_INTERP_INSTR_BEGIN(0x8e) /* FD_SBPF_OP_LMUL32_REG */
     898          33 :     reg[ dst ] = (ulong)( (uint)reg_dst * (uint)reg_src );
     899          33 :   FD_VM_INTERP_INSTR_END;
     900             : 
     901           9 :   FD_VM_INTERP_INSTR_BEGIN(0x8f) { /* FD_SBPF_OP_STXW */
     902           9 :     uchar is_multi_region = 0;
     903           9 :     ulong vaddr           = reg_dst + offset;
     904           9 :     ulong haddr           = fd_vm_mem_haddr( vm, vaddr, sizeof(uint), region_haddr, region_st_sz, 1, 0UL, &is_multi_region );
     905           9 :     int   sigsegv         = !haddr;
     906           9 :     if( FD_UNLIKELY( sigsegv ) ) {
     907           6 :       vm->segv_store_vaddr = vaddr;
     908             : 
     909           6 :       if( vm->direct_mapping ) {
     910             :         /* See FD_SBPF_OP_STH for details */
     911           0 :         uint val = (uint)reg_src;
     912           0 :         fd_vm_mem_st_try( vm, vaddr, sizeof(uint), (uchar*)&val );
     913           0 :       }
     914             : 
     915           6 :       goto sigsegv;
     916           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     917           3 :     fd_vm_mem_st_4( vm, vaddr, haddr, (uint)reg_src, is_multi_region );
     918           3 :   }
     919           3 :   FD_VM_INTERP_INSTR_END;
     920             : 
     921             :   /* 0x90 - 0x9f ******************************************************/
     922             : 
     923             :   FD_VM_INTERP_INSTR_BEGIN(0x94) /* FD_SBPF_OP_MOD_IMM */
     924          42 :     reg[ dst ] = (ulong)( (uint)reg_dst % imm );
     925          42 :   FD_VM_INTERP_INSTR_END;
     926             : 
     927          42 :   FD_VM_INTERP_BRANCH_BEGIN(0x95) { /* FD_SBPF_OP_SYSCALL */
     928             :     /* imm has already been validated to not overflow */
     929           0 :     uint syscall_key = FD_VM_SBPF_STATIC_SYSCALLS_LIST[ imm ];
     930           0 :     fd_sbpf_syscalls_t const * syscall = fd_sbpf_syscalls_query_const( syscalls, syscall_key, NULL );
     931             : 
     932             :     /* this check is probably useless, as validation includes checking that the
     933             :        syscall is active in this epoch.
     934             :        However, it's safe to keep it here, because at the time of writing this
     935             :        code we're not (re)validating all programs at every new epoch. */
     936           0 :     if( FD_UNLIKELY( !syscall ) ) goto sigill;
     937             : 
     938           0 :     FD_VM_INTERP_SYSCALL_EXEC;
     939             : 
     940           0 :   } FD_VM_INTERP_BRANCH_END;
     941             : 
     942             :   FD_VM_INTERP_INSTR_BEGIN(0x96) /* FD_SBPF_OP_LMUL64_IMM */
     943          39 :     reg[ dst ] = reg_dst * (ulong)(long)(int)imm;
     944          39 :   FD_VM_INTERP_INSTR_END;
     945             : 
     946           9 :   FD_VM_INTERP_INSTR_BEGIN(0x97) { /* FD_SBPF_OP_STQ */
     947           9 :     uchar is_multi_region = 0;
     948           9 :     ulong vaddr           = reg_dst + offset;
     949           9 :     ulong haddr           = fd_vm_mem_haddr( vm, vaddr, sizeof(ulong), region_haddr, region_st_sz, 1, 0UL, &is_multi_region );
     950           9 :     int   sigsegv         = !haddr;
     951           9 :     if( FD_UNLIKELY( sigsegv ) ) {
     952           6 :       vm->segv_store_vaddr = vaddr;
     953             : 
     954           6 :       if( vm->direct_mapping ) {
     955             :         /* See FD_SBPF_OP_STH for details */
     956           0 :         ulong val = (ulong)(long)(int)imm;
     957           0 :         fd_vm_mem_st_try( vm, vaddr, sizeof(ulong), (uchar*)&val );
     958           0 :       }
     959             : 
     960           6 :       goto sigsegv;
     961           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     962           3 :     fd_vm_mem_st_8( vm, vaddr, haddr, (ulong)(long)(int)imm, is_multi_region );
     963           3 :   }
     964           3 :   FD_VM_INTERP_INSTR_END;
     965             : 
     966          84 :   FD_VM_INTERP_INSTR_BEGIN(0x9c) { /* FD_SBPF_OP_LDXQ */
     967          84 :     uchar is_multi_region = 0;
     968          84 :     ulong vaddr           = reg_src + offset;
     969          84 :     ulong haddr           = fd_vm_mem_haddr( vm, vaddr, sizeof(ulong), region_haddr, region_ld_sz, 0, 0UL, &is_multi_region );
     970          84 :     int   sigsegv         = !haddr;
     971          84 :     if( FD_UNLIKELY( sigsegv ) ) goto sigsegv; /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     972          54 :     reg[ dst ] = fd_vm_mem_ld_8( vm, vaddr, haddr, is_multi_region );
     973          54 :   }
     974          54 :   FD_VM_INTERP_INSTR_END;
     975             : 
     976             :   FD_VM_INTERP_BRANCH_BEGIN(0x9d) /* FD_SBPF_OP_EXIT */
     977        5454 :       /* Agave JIT VM exit implementation analysis below.
     978        5454 : 
     979        5454 :        Agave references:
     980        5454 :        https://github.com/solana-labs/rbpf/blob/v0.8.5/src/interpreter.rs#L503-L509
     981        5454 :        https://github.com/solana-labs/rbpf/blob/v0.8.5/src/jit.rs#L697-L702 */
     982        5454 :     if( FD_UNLIKELY( !frame_cnt ) ) goto sigexit; /* Exit program */
     983           0 :     frame_cnt--;
     984           0 :     reg[6]   = shadow[ frame_cnt ].r6;
     985           0 :     reg[7]   = shadow[ frame_cnt ].r7;
     986           0 :     reg[8]   = shadow[ frame_cnt ].r8;
     987           0 :     reg[9]   = shadow[ frame_cnt ].r9;
     988           0 :     reg[10]  = shadow[ frame_cnt ].r10;
     989           0 :     pc       = shadow[ frame_cnt ].pc;
     990           0 :   FD_VM_INTERP_BRANCH_END;
     991             : 
     992             :   FD_VM_INTERP_INSTR_BEGIN(0x9e) /* FD_SBPF_OP_LMUL64_REG */
     993          57 :     reg[ dst ] = reg_dst * reg_src;
     994          57 :   FD_VM_INTERP_INSTR_END;
     995             : 
     996           9 :   FD_VM_INTERP_INSTR_BEGIN(0x9f) { /* FD_SBPF_OP_STXQ */
     997           9 :     uchar is_multi_region = 0;
     998           9 :     ulong vaddr           = reg_dst + offset;
     999           9 :     ulong haddr           = fd_vm_mem_haddr( vm, vaddr, sizeof(ulong), region_haddr, region_st_sz, 1, 0UL, &is_multi_region );
    1000           9 :     int   sigsegv         = !haddr;
    1001           9 :     if( FD_UNLIKELY( sigsegv ) ) {
    1002           6 :       vm->segv_store_vaddr = vaddr;
    1003             : 
    1004           6 :       if( vm->direct_mapping ) {
    1005             :         /* See FD_SBPF_OP_STH for details */
    1006           0 :         fd_vm_mem_st_try( vm, vaddr, sizeof(ulong), (uchar*)&reg_src );
    1007           0 :       }
    1008             : 
    1009           6 :       goto sigsegv;
    1010           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
    1011           3 :     fd_vm_mem_st_8( vm, vaddr, haddr, reg_src, is_multi_region );
    1012           3 :   }
    1013           3 :   FD_VM_INTERP_INSTR_END;
    1014             : 
    1015             :   FD_VM_INTERP_INSTR_BEGIN(0x97depr) /* FD_SBPF_OP_MOD64_IMM */
    1016          42 :     reg[ dst ] = reg_dst % (ulong)(long)(int)imm;
    1017          42 :   FD_VM_INTERP_INSTR_END;
    1018             : 
    1019             :   FD_VM_INTERP_INSTR_BEGIN(0x9cdepr) /* FD_SBPF_OP_MOD_REG */
    1020          57 :     if( FD_UNLIKELY( !(uint)reg_src ) ) goto sigfpe;
    1021          42 :     reg[ dst ] = (ulong)( ((uint)reg_dst % (uint)reg_src) );
    1022          42 :   FD_VM_INTERP_INSTR_END;
    1023             : 
    1024             :   FD_VM_INTERP_INSTR_BEGIN(0x9fdepr) /* FD_SBPF_OP_MOD64_REG */
    1025          54 :     if( FD_UNLIKELY( !reg_src ) ) goto sigfpe;
    1026          42 :     reg[ dst ] = reg_dst % reg_src;
    1027          42 :   FD_VM_INTERP_INSTR_END;
    1028             : 
    1029             :   /* 0xa0 - 0xaf ******************************************************/
    1030             : 
    1031             :   FD_VM_INTERP_INSTR_BEGIN(0xa4) /* FD_SBPF_OP_XOR_IMM */
    1032           9 :     reg[ dst ] = (ulong)( (uint)reg_dst ^ imm );
    1033           9 :   FD_VM_INTERP_INSTR_END;
    1034             : 
    1035             :   FD_VM_INTERP_BRANCH_BEGIN(0xa5) /* FD_SBPF_OP_JLT_IMM */
    1036        3096 :     pc += fd_ulong_if( reg_dst<(ulong)(long)(int)imm, offset, 0UL );
    1037        3096 :   FD_VM_INTERP_BRANCH_END;
    1038             : 
    1039             :   FD_VM_INTERP_INSTR_BEGIN(0xa7) /* FD_SBPF_OP_XOR64_IMM */
    1040           9 :     reg[ dst ] = reg_dst ^ (ulong)(long)(int)imm;
    1041           9 :   FD_VM_INTERP_INSTR_END;
    1042             : 
    1043             :   FD_VM_INTERP_INSTR_BEGIN(0xac) /* FD_SBPF_OP_XOR_REG */
    1044           9 :     reg[ dst ] = (ulong)(uint)( reg_dst ^ reg_src );
    1045           9 :   FD_VM_INTERP_INSTR_END;
    1046             : 
    1047             :   FD_VM_INTERP_BRANCH_BEGIN(0xad) /* FD_SBPF_OP_JLT_REG */
    1048        2493 :     pc += fd_ulong_if( reg_dst<reg_src, offset, 0UL );
    1049        2493 :   FD_VM_INTERP_BRANCH_END;
    1050             : 
    1051             :   FD_VM_INTERP_INSTR_BEGIN(0xaf) /* FD_SBPF_OP_XOR64_REG */
    1052          21 :     reg[ dst ] = reg_dst ^ reg_src;
    1053          21 :   FD_VM_INTERP_INSTR_END;
    1054             : 
    1055             :   /* 0xb0 - 0xbf ******************************************************/
    1056             : 
    1057             :   FD_VM_INTERP_INSTR_BEGIN(0xb4) /* FD_SBPF_OP_MOV_IMM */
    1058         330 :     reg[ dst ] = (ulong)imm;
    1059         330 :   FD_VM_INTERP_INSTR_END;
    1060             : 
    1061             :   FD_VM_INTERP_BRANCH_BEGIN(0xb5) /* FD_SBPF_OP_JLE_IMM */
    1062        6066 :     pc += fd_ulong_if( reg_dst<=(ulong)(long)(int)imm, offset, 0UL );
    1063        6066 :   FD_VM_INTERP_BRANCH_END;
    1064             : 
    1065             :   FD_VM_INTERP_INSTR_BEGIN(0xb6) /* FD_SBPF_OP_SHMUL64_IMM */
    1066           3 :     reg[ dst ] = (ulong)(( (int128)(long)reg_dst * (int128)(long)(int)imm ) >> 64 );
    1067           3 :   FD_VM_INTERP_INSTR_END;
    1068             : 
    1069             :   FD_VM_INTERP_INSTR_BEGIN(0xb7) /* FD_SBPF_OP_MOV64_IMM */
    1070       60120 :     reg[ dst ] = (ulong)(long)(int)imm;
    1071       60120 :   FD_VM_INTERP_INSTR_END;
    1072             : 
    1073             :   FD_VM_INTERP_INSTR_BEGIN(0xbc) /* FD_SBPF_OP_MOV_REG */
    1074           3 :     reg[ dst ] = (ulong)(long)(int)reg_src;
    1075           3 :   FD_VM_INTERP_INSTR_END;
    1076             : 
    1077             :   FD_VM_INTERP_INSTR_BEGIN(0xbcdepr) /* FD_SBPF_OP_MOV_REG deprecated SIMD-1074 */
    1078          15 :     reg[ dst ] = (ulong)(uint)reg_src;
    1079          15 :   FD_VM_INTERP_INSTR_END;
    1080             : 
    1081             :   FD_VM_INTERP_BRANCH_BEGIN(0xbd) /* FD_SBPF_OP_JLE_REG */
    1082        4869 :     pc += fd_ulong_if( reg_dst<=reg_src, offset, 0UL );
    1083        4869 :   FD_VM_INTERP_BRANCH_END;
    1084             : 
    1085             :   FD_VM_INTERP_INSTR_BEGIN(0xbe) /* FD_SBPF_OP_SHMUL64_REG */
    1086           3 :     reg[ dst ] = (ulong)(( (int128)(long)reg_dst * (int128)(long)reg_src ) >> 64 );
    1087           3 :   FD_VM_INTERP_INSTR_END;
    1088             : 
    1089             :   FD_VM_INTERP_INSTR_BEGIN(0xbf) /* FD_SBPF_OP_MOV64_REG */
    1090       60036 :     reg[ dst ] = reg_src;
    1091       60036 :   FD_VM_INTERP_INSTR_END;
    1092             : 
    1093             :   /* 0xc0 - 0xcf ******************************************************/
    1094             : 
    1095             :   FD_VM_INTERP_INSTR_BEGIN(0xc4) /* FD_SBPF_OP_ARSH_IMM */
    1096           9 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst >> imm ); /* FIXME: WIDE SHIFTS, STRICT SIGN EXTENSION */
    1097           9 :   FD_VM_INTERP_INSTR_END;
    1098             : 
    1099             :   FD_VM_INTERP_BRANCH_BEGIN(0xc5) /* FD_SBPF_OP_JSLT_IMM */ /* FIXME: CHECK IMM SIGN EXTENSION */
    1100        3072 :     pc += fd_ulong_if( (long)reg_dst<(long)(int)imm, offset, 0UL );
    1101        3072 :   FD_VM_INTERP_BRANCH_END;
    1102             : 
    1103             :   FD_VM_INTERP_INSTR_BEGIN(0xc6) /* FD_SBPF_OP_SDIV32_IMM */
    1104          45 :     if( FD_UNLIKELY( ((int)reg_dst==INT_MIN) & ((int)imm==-1) ) ) goto sigfpeof;
    1105          39 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst / (int)imm );
    1106          39 :   FD_VM_INTERP_INSTR_END;
    1107             : 
    1108             :   FD_VM_INTERP_INSTR_BEGIN(0xc7) /* FD_SBPF_OP_ARSH64_IMM */
    1109           9 :     reg[ dst ] = (ulong)( (long)reg_dst >> imm ); /* FIXME: WIDE SHIFTS, STRICT SIGN EXTENSION */
    1110           9 :   FD_VM_INTERP_INSTR_END;
    1111             : 
    1112             :   FD_VM_INTERP_INSTR_BEGIN(0xcc) /* FD_SBPF_OP_ARSH_REG */
    1113          12 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst >> (uint)reg_src ); /* FIXME: WIDE SHIFTS, STRICT SIGN EXTENSION */
    1114          12 :   FD_VM_INTERP_INSTR_END;
    1115             : 
    1116             :   FD_VM_INTERP_BRANCH_BEGIN(0xcd) /* FD_SBPF_OP_JSLT_REG */
    1117        3078 :     pc += fd_ulong_if( (long)reg_dst<(long)reg_src, offset, 0UL );
    1118        3078 :   FD_VM_INTERP_BRANCH_END;
    1119             : 
    1120             :   FD_VM_INTERP_INSTR_BEGIN(0xce) /* FD_SBPF_OP_SDIV32_REG */
    1121          54 :     if( FD_UNLIKELY( !(int)reg_src ) ) goto sigfpe;
    1122          42 :     if( FD_UNLIKELY( ((int)reg_dst==INT_MIN) & ((int)reg_src==-1) ) ) goto sigfpeof;
    1123          36 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst / (int)reg_src );
    1124          36 :   FD_VM_INTERP_INSTR_END;
    1125             : 
    1126             :   FD_VM_INTERP_INSTR_BEGIN(0xcf) /* FD_SBPF_OP_ARSH64_REG */
    1127           9 :     reg[ dst ] = (ulong)( (long)reg_dst >> reg_src ); /* FIXME: WIDE SHIFTS, STRICT SIGN EXTENSION */
    1128           9 :   FD_VM_INTERP_INSTR_END;
    1129             : 
    1130             :   /* 0xd0 - 0xdf ******************************************************/
    1131             : 
    1132             :   FD_VM_INTERP_INSTR_BEGIN(0xd4) /* FD_SBPF_OP_END_LE */
    1133          21 :     switch( imm ) {
    1134           9 :     case 16U: reg[ dst ] = (ushort)reg_dst; break;
    1135           3 :     case 32U: reg[ dst ] = (uint)  reg_dst; break;
    1136           3 :     case 64U:                               break;
    1137           6 :     default: goto sigill;
    1138          21 :     }
    1139          15 :   FD_VM_INTERP_INSTR_END;
    1140             : 
    1141             :   FD_VM_INTERP_BRANCH_BEGIN(0xd5) /* FD_SBPF_OP_JSLE_IMM */
    1142        2436 :     pc += fd_ulong_if( (long)reg_dst<=(long)(int)imm, offset, 0UL );
    1143        2436 :   FD_VM_INTERP_BRANCH_END;
    1144             : 
    1145             :   FD_VM_INTERP_INSTR_BEGIN(0xd6) /* FD_SBPF_OP_SDIV64_IMM */
    1146          42 :     if( FD_UNLIKELY( ((long)reg_dst==LONG_MIN) & ((long)(int)imm==-1L) ) ) goto sigfpeof;
    1147          39 :     reg[ dst ] = (ulong)( (long)reg_dst / (long)(int)imm );
    1148          39 :   FD_VM_INTERP_INSTR_END;
    1149             : 
    1150             :   FD_VM_INTERP_INSTR_BEGIN(0xdc) /* FD_SBPF_OP_END_BE */
    1151          75 :     switch( imm ) {
    1152          42 :     case 16U: reg[ dst ] = (ulong)fd_ushort_bswap( (ushort)reg_dst ); break;
    1153          12 :     case 32U: reg[ dst ] = (ulong)fd_uint_bswap  ( (uint)  reg_dst ); break;
    1154           9 :     case 64U: reg[ dst ] =        fd_ulong_bswap ( (ulong) reg_dst ); break;
    1155          12 :     default: goto sigill;
    1156          75 :     }
    1157          63 :   FD_VM_INTERP_INSTR_END;
    1158             : 
    1159             :   FD_VM_INTERP_BRANCH_BEGIN(0xdd) /* FD_SBPF_OP_JSLE_REG */
    1160        1836 :     pc += fd_ulong_if( (long)reg_dst<=(long)reg_src, offset, 0UL );
    1161        1836 :   FD_VM_INTERP_BRANCH_END;
    1162             : 
    1163             :   FD_VM_INTERP_INSTR_BEGIN(0xde) /* FD_SBPF_OP_SDIV64_REG */
    1164          48 :     if( FD_UNLIKELY( !reg_src ) ) goto sigfpe;
    1165          39 :     if( FD_UNLIKELY( ((long)reg_dst==LONG_MIN) & ((long)reg_src==-1L) ) ) goto sigfpeof;
    1166          36 :     reg[ dst ] = (ulong)( (long)reg_dst / (long)reg_src );
    1167          36 :   FD_VM_INTERP_INSTR_END;
    1168             : 
    1169             :   /* 0xe0 - 0xef ******************************************************/
    1170             : 
    1171             :   FD_VM_INTERP_INSTR_BEGIN(0xe6) /* FD_SBPF_OP_SREM32_IMM */
    1172          45 :     if( FD_UNLIKELY( ((int)reg_dst==INT_MIN) & ((int)imm==-1) ) ) goto sigfpeof;
    1173          39 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst % (int)imm );
    1174          39 :   FD_VM_INTERP_INSTR_END;
    1175             : 
    1176             :   FD_VM_INTERP_INSTR_BEGIN(0xee) /* FD_SBPF_OP_SREM32_REG */
    1177          54 :     if( FD_UNLIKELY( !(int)reg_src ) ) goto sigfpe;
    1178          42 :     if( FD_UNLIKELY( ((int)reg_dst==INT_MIN) & ((int)reg_src==-1) ) ) goto sigfpeof;
    1179          36 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst % (int)reg_src );
    1180          36 :   FD_VM_INTERP_INSTR_END;
    1181             : 
    1182             :   /* 0xf0 - 0xff ******************************************************/
    1183             : 
    1184             :   FD_VM_INTERP_INSTR_BEGIN(0xf6) /* FD_SBPF_OP_SREM64_IMM */
    1185          42 :     if( FD_UNLIKELY( ((long)reg_dst==LONG_MIN) & ((long)(int)imm==-1L) ) ) goto sigfpeof;
    1186          39 :     reg[ dst ] = (ulong)( (long)reg_dst % (long)(int)imm );
    1187          39 :   FD_VM_INTERP_INSTR_END;
    1188             : 
    1189             :   FD_VM_INTERP_BRANCH_BEGIN(0xf7) /* FD_SBPF_OP_HOR64 */
    1190          21 :     reg[ dst ] = reg_dst | (((ulong)imm) << 32);
    1191          21 :   FD_VM_INTERP_BRANCH_END;
    1192             : 
    1193             :   FD_VM_INTERP_INSTR_BEGIN(0xfe) /* FD_SBPF_OP_SREM64_REG */
    1194          48 :     if( FD_UNLIKELY( !reg_src ) ) goto sigfpe;
    1195          39 :     if( FD_UNLIKELY( ((long)reg_dst==LONG_MIN) & ((long)reg_src==-1L) ) ) goto sigfpeof;
    1196          36 :     reg[ dst ] = (ulong)( (long)reg_dst % (long)reg_src );
    1197          36 :   FD_VM_INTERP_INSTR_END;
    1198             : 
    1199             :   /* FIXME: sigbus/sigrdonly are mapped to sigsegv for simplicity
    1200             :      currently but could be enabled if desired. */
    1201             : 
    1202             :   /* Note: sigtextbr is for sigtext errors that occur on branching
    1203             :      instructions (i.e., prefixed with FD_VM_INTERP_BRANCH_BEGIN).
    1204             :      We skip a repeat ic accumulation in FD_VM_INTERP_FAULT */
    1205             : 
    1206             :   /* FD_VM_INTERP_FAULT accumulates to ic and cu all non-faulting
    1207             :      instructions preceeding a fault generated by a non-branching
    1208             :      instruction.  When a non-branching instruction faults, pc is at the
    1209             :      instruction and the number of non-branching instructions that have
    1210             :      not yet been reflected in ic and cu is:
    1211             : 
    1212             :        pc - pc0 + 1 - ic_correction
    1213             : 
    1214             :      as per the accounting described above. +1 to include the faulting
    1215             :      instruction itself.
    1216             : 
    1217             :      Note that, for a sigtext caused by a branch instruction, pc0==pc
    1218             :      (from the BRANCH_END) and ic_correction==0 (from the BRANCH_BEGIN)
    1219             :      such that the below does not change the already current values in
    1220             :      ic and cu.  Thus it also "does the right thing" in both the
    1221             :      non-branching and branching cases for sigtext.  The same applies to
    1222             :      sigsplit. */
    1223             : 
    1224           0 : #define FD_VM_INTERP_FAULT                                          \
    1225        1596 :   ic_correction = pc - pc0 + 1UL - ic_correction;                   \
    1226        1596 :   ic += ic_correction;                                              \
    1227        1596 :   if ( FD_UNLIKELY( ic_correction > cu ) ) err = FD_VM_ERR_SIGCOST; \
    1228        1596 :   cu -= fd_ulong_min( ic_correction, cu )
    1229             : 
    1230          78 : sigtext:     err = FD_VM_ERR_SIGTEXT;     FD_VM_INTERP_FAULT;                     goto interp_halt;
    1231          42 : sigtextbr:   err = FD_VM_ERR_SIGTEXT;     /* ic current */      /* cu current */  goto interp_halt;
    1232           6 : sigcall:     err = FD_VM_ERR_SIGILL;      /* ic current */      /* cu current */  goto interp_halt;
    1233           0 : sigstack:    err = FD_VM_ERR_SIGSTACK;    /* ic current */      /* cu current */  goto interp_halt;
    1234        1194 : sigill:      err = FD_VM_ERR_SIGILL;      FD_VM_INTERP_FAULT;                     goto interp_halt;
    1235         150 : sigsegv:     err = FD_VM_ERR_SIGSEGV;     FD_VM_INTERP_FAULT;                     goto interp_halt;
    1236         681 : sigcost:     err = FD_VM_ERR_SIGCOST;     /* ic current */      cu = 0UL;         goto interp_halt;
    1237           0 : sigsyscall:  err = FD_VM_ERR_SIGSYSCALL;  /* ic current */      /* cu current */  goto interp_halt;
    1238         138 : sigfpe:      err = FD_VM_ERR_SIGFPE;      FD_VM_INTERP_FAULT;                     goto interp_halt;
    1239          36 : sigfpeof:    err = FD_VM_ERR_SIGFPE_OF;   FD_VM_INTERP_FAULT;                     goto interp_halt;
    1240        5454 : sigexit:     /* err current */            /* ic current */      /* cu current */  goto interp_halt;
    1241             : 
    1242           0 : #undef FD_VM_INTERP_FAULT
    1243             : 
    1244        7779 : interp_halt:
    1245             : 
    1246             :   /* Pack the unpacked execution state into vm to give a precise view of
    1247             :      the execution when the vm halted. */
    1248             : 
    1249        7779 :   vm->pc        = pc;
    1250        7779 :   vm->ic        = ic;
    1251        7779 :   vm->cu        = cu;
    1252        7779 :   vm->frame_cnt = frame_cnt;
    1253             : 
    1254        7779 : # undef FD_VM_INTERP_STACK_PUSH
    1255             : 
    1256        7779 : # undef FD_VM_INTERP_BRANCH_END
    1257        7779 : # undef FD_VM_INTERP_BRANCH_BEGIN
    1258             : 
    1259        7779 : # undef FD_VM_INTERP_INSTR_END
    1260        7779 : # undef FD_VM_INTERP_INSTR_BEGIN
    1261        7779 : # undef FD_VM_INTERP_INSTR_EXEC
    1262             : 
    1263        7779 : # if defined(__clang__)
    1264        7779 : # pragma clang diagnostic pop
    1265        7779 : # endif
    1266             : 
    1267        7779 : # if defined(__GNUC__)
    1268        7779 : # pragma GCC diagnostic pop
    1269        7779 : # endif
    1270             : 
    1271             : /*   Agave/JIT CU model analysis (and why we are conformant!):
    1272             : 
    1273             :      The Agave JIT employs a similar strategy of accumulating instructions
    1274             :      in a linear run and processing them at the start of a new linear
    1275             :      run/branch (side note: the JIT treats the LDQ instruction as a "branch"
    1276             :      that jumps pc + 2).
    1277             : 
    1278             :      In what is assumed to be an act of register conservation, the JIT
    1279             :      uses a catch-all "instruction meter" (IM) register (REGISTER_INSTRUCTION_METER)
    1280             :      that represents two different interpretations of the question
    1281             :      "how many instructions can I execute?".
    1282             : 
    1283             :      The IM, depending on where we are in the execution, either represents:
    1284             :         1. IM => The number of instructions remaining before exhausting CU
    1285             :         budget. This is analagous to vm->cu in our interpreter.
    1286             :         2. IM' => The last pc you can execute in the current linear run before
    1287             :         exhausting CU budget.  Mathematically, IM' = IM + pc0
    1288             :         where pc0, just like our definition, is the start of the linear run.
    1289             : 
    1290             :         Note: IM' can go past the actual basic block/segment. In-fact,
    1291             :         it typically does, and implies we can execute the full block without
    1292             :         exhausting CU budget (reminder that LDQ is treated as a branch).
    1293             : 
    1294             :       By default, the IM' form is used during execution. The IM form is used:
    1295             :         - (transiently) during the processing of a branch instruction
    1296             :         - in post-VM cleanup (updates EbpfVm::previous_instruction_meter).
    1297             : 
    1298             :       When a branch instruction is encountered, the JIT checks
    1299             :       for CU exhaustion with pc > IM', and throws an exception if so. This is valid,
    1300             :       because as described above, IM' is the largest PC you can reach.
    1301             : 
    1302             :       If we haven't exhausted our CU limit, it updates IM':
    1303             :         1. IM = IM' - (pc + 1)  # Note that IM' at this point is IM + pc0',
    1304             :                                 # where pc0' is the start of the current linear run.
    1305             :         2. IM' = IM + pc0       # pc0 is the start of the new linear run (typically the target pc)
    1306             : 
    1307             :       Code (that does the above in one ALU instruction):
    1308             :        https://github.com/solana-labs/rbpf/blob/v0.8.5/src/jit.rs#L891
    1309             : 
    1310             : 
    1311             :       ### How does this relate to our interpreter?
    1312             : 
    1313             :       This process is similar to FD_VM_INTERP_BRANCH_BEGIN.
    1314             :       We just deal with the IM form throughout (with vm->cu and ic_correction).
    1315             :       If we break down step 1 from above with what we know about IM and IM',
    1316             :       we get the following:
    1317             :         1. IM = IM' - (pc + 1)
    1318             :            IM = (IM + pc0') - (pc + 1)
    1319             :            IM = IM + (pc0' - (pc + 1))
    1320             :            IM = IM - ((pc + 1) - pc0')
    1321             :            IM = IM - ic_correction
    1322             :       Here, ((pc + 1) - pc0') is the number of instrutions executed in the current
    1323             :       linear run. This is the same as our ic_correction(*) in FD_VM_INTERP_BRANCH_BEGIN.
    1324             : 
    1325             :       If we replace IM with cu, this effectively becomes the
    1326             :            cu -= ic_correction
    1327             :       line in FD_VM_INTERP_BRANCH_BEGIN.
    1328             : 
    1329             :       (*) Note: ic_correction (also) takes two forms. It is either the instruction
    1330             :       accumulator or the number of instructions executed in the current linear run.
    1331             :       It (transiently) takes the latter form during FD_VM_INTERP_BRANCH_BEGIN and
    1332             :       FD_VM_INTERP_FAULT, and the former form otherwise.
    1333             : */
    1334             : 
    1335             : /* (WIP) Precise faulting and the Agave JIT:
    1336             : 
    1337             :    Since the cost model is a part of consensus, we need to conform with the Agave/JIT
    1338             :    cost model 1:1. To achieve that, our faulting model also needs to match precisely. This
    1339             :    section covers the various faults that the respective VMs implement and how they match.
    1340             : 
    1341             :    # Normal VM exit (sigexit):
    1342             :    VM exit instruction entrypoint: https://github.com/solana-labs/rbpf/blob/12237895305ab38514be865ebed6268553e4f589/src/jit.rs#L698-L708
    1343             : 
    1344             :    Pseudocode (with FD semantics):
    1345             :    ```
    1346             :     # pc is at the exit instruction
    1347             :     # pc0 is the start of the current linear run
    1348             :     if (frame_cnt == 0) {
    1349             :         goto sigexit;
    1350             :     }
    1351             :     ...
    1352             : 
    1353             :     sigexit:
    1354             :     if IM' <= pc {
    1355             :       goto sigcost;
    1356             :     } else {
    1357             :       goto interp_halt;
    1358             :     }
    1359             :     ```
    1360             : 
    1361             :     Breaking down the IM' < pc check:
    1362             :     - IM' = IM + pc0
    1363             :     - pc  = ic + pc0, where (ic + 1) is the number of instructions executed in the current linear run
    1364             : 
    1365             :     IM' <= pc
    1366             :     IM + pc0 <= ic + pc0
    1367             :     IM <= ic
    1368             :     IM <= pc - pc0
    1369             :     IM < pc - pc0 + 1 # all unsigned integers
    1370             :     IM < ic_correction
    1371             : 
    1372             :     This is analagous to the ic_correction>cu check in VM_INTERP_BRANCH_BEGIN.
    1373             : 
    1374             :    # (TODO) Text Overrun (sigtext/sigsplit):
    1375             : 
    1376             : */

Generated by: LCOV version 1.14