LCOV - code coverage report
Current view: top level - flamenco/vm - fd_vm_interp_core.c (source / functions) Hit Total Coverage
Test: cov.lcov Lines: 623 710 87.7 %
Date: 2026-02-02 06:06:54 Functions: 0 0 -

          Line data    Source code
       1             :   /* This is the VM SBPF interpreter core.  The caller unpacks the VM
       2             :      state and then just lets execution continue into this (or jumps to
       3             :      interp_exec) to start running.  The VM will run until it halts or
       4             :      faults.  On normal termination, it will branch to interp_halt to
       5             :      exit.  Each fault has its own exit label to allow the caller to
       6             :      handle individually. */
       7             : 
       8             :   /* FIXME: SIGILLS FOR VARIOUS THINGS THAT HAVE UNNECESSARY BITS IN IMM
       9             :      SET? (LIKE WIDE SHIFTS?) */
      10             : 
      11           0 : # if defined(__GNUC__) /* -Wpedantic rejects labels as values and rejects goto *expr */
      12           0 : # pragma GCC diagnostic push
      13           0 : # pragma GCC diagnostic ignored "-Wpedantic"
      14           0 : # endif
      15             : 
      16           0 : # if defined(__clang__) /* Clang is differently picky about labels as values and goto *expr */
      17           0 : # pragma clang diagnostic push
      18           0 : # pragma clang diagnostic ignored "-Wpedantic"
      19           0 : # pragma clang diagnostic ignored "-Wgnu-label-as-value"
      20           0 : # endif
      21             : 
      22             :   /* Include the jump table */
      23             : 
      24        8217 : # include "fd_vm_interp_jump_table.c"
      25             : 
      26             :   /* Update the jump table based on SBPF version */
      27             : 
      28           0 :   ulong sbpf_version = vm->sbpf_version;
      29             : 
      30             :   /* Unpack the VM state */
      31             : 
      32           0 :   ulong pc        = vm->pc;
      33           0 :   ulong ic        = vm->ic;
      34           0 :   ulong cu        = vm->cu;
      35           0 :   ulong frame_cnt = vm->frame_cnt;
      36             : 
      37           0 :   void const * const * const version_interp_jump_table = interp_jump_table[ sbpf_version ];
      38             : 
      39             :   /* FD_VM_INTERP_INSTR_EXEC loads the first word of the instruction at
      40             :      pc, parses it, fetches the associated register values and then
      41             :      jumps to the code that executes the instruction.  On normal
      42             :      instruction execution, the pc will be updated and
      43             :      FD_VM_INTERP_INSTR_EXEC will be invoked again to do the next
      44             :      instruction.  After a normal halt, this will branch to interp_halt.
      45             :      Otherwise, it will branch to the appropriate normal termination. */
      46             : 
      47           0 :   ulong instr;
      48           0 :   ulong opcode;
      49           0 :   ulong dst;
      50           0 :   ulong src;
      51           0 :   ulong offset; /* offset is 16-bit but always sign extended, so we handle cast once */
      52           0 :   uint  imm;
      53           0 :   ulong reg_dst;
      54           0 :   ulong reg_src;
      55             : 
      56             : /* These mimic the exact Rust semantics for wrapping_shl and wrapping_shr. */
      57             : 
      58             : /* u64::wrapping_shl: a.unchecked_shl(b & (64 - 1))
      59             : 
      60             :    https://doc.rust-lang.org/std/primitive.u64.html#method.wrapping_shl
      61             :  */
      62         465 : #define FD_RUST_ULONG_WRAPPING_SHL( a, b ) ((a) << ( (b) & ( 63 ) ))
      63             : 
      64             : /* u64::wrapping_shr: a.unchecked_shr(b & (64 - 1))
      65             : 
      66             :    https://doc.rust-lang.org/std/primitive.u64.html#method.wrapping_shr
      67             :  */
      68          21 : #define FD_RUST_ULONG_WRAPPING_SHR( a, b ) ((a) >> ( (b) & ( 63 ) ))
      69             : 
      70             : /* u32::wrapping_shl: a.unchecked_shl(b & (32 - 1))
      71             : 
      72             :    https://doc.rust-lang.org/std/primitive.u32.html#method.wrapping_shl
      73             :  */
      74         900 : #define FD_RUST_UINT_WRAPPING_SHL( a, b ) ((a) << ( (b) & ( 31 ) ))
      75             : 
      76             : /* u32::wrapping_shr: a.unchecked_shr(b & (32 - 1))
      77             : 
      78             :    https://doc.rust-lang.org/std/primitive.u32.html#method.wrapping_shr
      79             :  */
      80          18 : #define FD_RUST_UINT_WRAPPING_SHR( a, b ) ((a) >> ( (b) & ( 31 ) ))
      81             : 
      82             : /* i32::wrapping_shr: a.unchecked_shr(b & (32 - 1))
      83             : 
      84             :    https://doc.rust-lang.org/std/primitive.i32.html#method.wrapping_shr
      85             :  */
      86         243 : #define FD_RUST_INT_WRAPPING_SHR( a, b ) ((a) >> ( (b) & ( 31 ) ))
      87             : 
      88             : /* i64::wrapping_shr: a.unchecked_shr(b & (64 - 1))
      89             : 
      90             :    https://doc.rust-lang.org/std/primitive.i64.html#method.wrapping_shr
      91             :  */
      92         228 : #define FD_RUST_LONG_WRAPPING_SHR( a, b ) ((a) >> ( (b) & ( 63 ) ))
      93             : 
      94             : 
      95           0 : # define FD_VM_INTERP_INSTR_EXEC                                                                 \
      96      382821 :   if( FD_UNLIKELY( pc>=text_cnt ) ) goto sigtext; /* Note: untaken branches don't consume BTB */ \
      97      382821 :   instr   = text[ pc ];                  /* Guaranteed in-bounds */                              \
      98      382719 :   opcode  = fd_vm_instr_opcode( instr ); /* in [0,256) even if malformed */                      \
      99      382719 :   dst     = fd_vm_instr_dst   ( instr ); /* in [0, 16) even if malformed */                      \
     100      382719 :   src     = fd_vm_instr_src   ( instr ); /* in [0, 16) even if malformed */                      \
     101      382719 :   offset  = fd_vm_instr_offset( instr ); /* in [-2^15,2^15) even if malformed */                 \
     102      382719 :   imm     = fd_vm_instr_imm   ( instr ); /* in [0,2^32) even if malformed */                     \
     103      382719 :   reg_dst = reg[ dst ];                  /* Guaranteed in-bounds */                              \
     104      382719 :   reg_src = reg[ src ];                  /* Guaranteed in-bounds */                              \
     105      382719 :   goto *version_interp_jump_table[ opcode ]      /* Guaranteed in-bounds */
     106             : 
     107             : /* FD_VM_INTERP_SYSCALL_EXEC
     108             :    (macro to handle the logic of 0x85 pre- and post- SIMD-0178: static syscalls)
     109             : 
     110             :    Setup.
     111             :    Update the vm with the current vm execution state for the
     112             :    syscall.  Note that BRANCH_BEGIN has pc at the syscall and
     113             :    already updated ic and cu to reflect all instructions up to
     114             :    and including the syscall instruction itself.
     115             : 
     116             :    Execution.
     117             :    Do the syscall.  We use ret reduce the risk of the syscall
     118             :    accidentally modifying other registers (note however since a
     119             :    syscall has the vm handle it still do arbitrary modifications
     120             :    to the vm state) and the risk of a pointer escape on reg from
     121             :    inhibiting compiler optimizations (this risk is likely low in
     122             :    as this is the only point in the whole interpreter core that
     123             :    calls outside this translation unit).
     124             :    At this point, vm->cu is positive.
     125             : 
     126             :    Error handling.
     127             :    If we trust syscall implementations to handle the vm state
     128             :    correctly, the below could be implemented as unpacking the vm
     129             :    state and jumping to sigsys on error.  But we provide some
     130             :    extra protection to make various strong guarantees:
     131             : 
     132             :    - We do not let the syscall modify pc currently as nothing
     133             :      requires this and it reduces risk of a syscall bug mucking
     134             :      up the interpreter.  If there ever was a syscall that
     135             :      needed to modify the pc (e.g. a syscall that has execution
     136             :      resume from a different location than the instruction
     137             :      following the syscall), do "pc = vm->pc" below.
     138             : 
     139             :    - We do not let the syscall modify ic currently as nothing
     140             :      requires this and it keeps the ic precise.  If a future
     141             :      syscall needs this, do "ic = vm->ic" below.
     142             : 
     143             :    - We do not let the syscall increase cu as nothing requires
     144             :      this and it guarantees the interpreter will halt in a
     145             :      reasonable finite amount of time.  If a future syscall
     146             :      needs this, do "cu = vm->cu" below.
     147             : 
     148             :    - A syscall that returns SIGCOST is always treated as though
     149             :      it also zerod cu.
     150             : 
     151             :    At this point, vm->cu is whatever the syscall tried to set
     152             :    and cu is positive.
     153             : 
     154             :    Exit
     155             :    At this point, cu is positive and err is clear.
     156             : */
     157             : 
     158           0 : # if FD_HAS_FLATCC
     159           0 : # define FD_VM_INTERP_SYSCALL_EXEC_DUMP                                       \
     160             :   /* Dumping for debugging purposes */                                        \
     161           3 :   if( FD_UNLIKELY( vm->dump_syscall_to_pb ) ) {                               \
     162           0 :     fd_dump_vm_syscall_to_protobuf( vm, syscall->name );                      \
     163           0 :   }
     164             : # else
     165             : # define FD_VM_INTERP_SYSCALL_EXEC_DUMP
     166             : # endif
     167           0 : # define FD_VM_INTERP_SYSCALL_EXEC                                            \
     168             :   /* Setup */                                                                 \
     169           3 :   vm->pc        = pc;                                                         \
     170           3 :   vm->ic        = ic;                                                         \
     171           3 :   vm->cu        = cu;                                                         \
     172           3 :   vm->frame_cnt = frame_cnt;                                                  \
     173           3 :   FD_VM_INTERP_SYSCALL_EXEC_DUMP                                              \
     174             :   /* Execution */                                                             \
     175           3 :   ulong ret[1];                                                               \
     176           3 :   err = syscall->func( vm, reg[1], reg[2], reg[3], reg[4], reg[5], ret );     \
     177           3 :   reg[0] = ret[0];                                                            \
     178             :   /* Error handling */                                                        \
     179           3 :   ulong cu_req = vm->cu;                                                      \
     180           3 :   cu = fd_ulong_min( cu_req, cu );                                            \
     181           3 :   if( FD_UNLIKELY( err ) ) {                                                  \
     182           0 :     if( err==FD_VM_SYSCALL_ERR_COMPUTE_BUDGET_EXCEEDED ) cu = 0UL; /* cmov */ \
     183           0 :     FD_VM_TEST_ERR_EXISTS( vm );                                              \
     184           0 :     goto sigsyscall;                                                          \
     185           0 :   }                                                                           \
     186             :   /* Exit */
     187             : 
     188             : 
     189             :   /* FD_VM_INTERP_INSTR_BEGIN / FD_VM_INTERP_INSTR_END bracket opcode's
     190             :      implementation for an opcode that does not branch.  On entry, the
     191             :      instruction word has been unpacked into dst / src / offset / imm
     192             :      and reg[dst] / reg[src] has been prefetched into reg_dst / reg_src. */
     193             : 
     194      245709 : # define FD_VM_INTERP_INSTR_BEGIN(opcode) interp_##opcode:
     195             : 
     196             : # ifndef FD_VM_INTERP_EXE_TRACING_ENABLED /* Non-tracing path only, ~0.3% faster in some benchmarks, slower in others but more code footprint */
     197      245337 : # define FD_VM_INTERP_INSTR_END pc++; FD_VM_INTERP_INSTR_EXEC
     198             : # else /* Use this version when tracing or optimizing code footprint */
     199           0 : # define FD_VM_INTERP_INSTR_END pc++; goto interp_exec
     200             : # endif
     201             : 
     202             :   /* Instead of doing a lot of compute budget calcs and tests every
     203             :      instruction, we note that the program counter increases
     204             :      monotonically after a branch (or a program start) until the next
     205             :      branch (or program termination).  We save the program counter of
     206             :      the start of such a segment in pc0.  Whenever we encounter a branch
     207             :      (or a program termination) at pc, we know we processed pc-pc0+1
     208             :      text words (including the text word for the branch instruction
     209             :      itself as all branch instructions are single word).
     210             : 
     211             :      Each instruction costs 1 cu (syscalls can cost extra on top of
     212             :      this that is accounted separately in CALL_IMM below).  Since there
     213             :      could have been multiword instructions in this segment, at start of
     214             :      such a segment, we zero out the accumulator ic_correction and have
     215             :      every multiword instruction in the segment accumulate the number of
     216             :      extra text words it has to this variable.  (Sigh ... it would be a
     217             :      lot simpler to bill based on text words processed but this would be
     218             :      very difficult to make this protocol change at this point.)
     219             : 
     220             :      When we encounter a branch at pc, the number of instructions
     221             :      processed (and thus the number of compute units to bill for that
     222             :      segment) is thus:
     223             : 
     224             :        pc - pc0 + 1 - ic_correction
     225             : 
     226             :      IMPORTANT SAFETY TIP!  This implies the worst case interval before
     227             :      checking the cu budget is the worst case text_cnt.  But since all
     228             :      such instructions are cheap 1 cu instructions and processed fast
     229             :      and text max is limited in size, this should be acceptable in
     230             :      practice.  FIXME: DOUBLE CHECK THE MATH ABOVE AGAINST PROTOCOL
     231             :      LIMITS. */
     232             : 
     233           0 :   ulong pc0           = pc;
     234           0 :   ulong ic_correction = 0UL;
     235             : 
     236           0 : # define FD_VM_INTERP_BRANCH_BEGIN(opcode)                                                              \
     237      135834 :   interp_##opcode:                                                                                      \
     238             :     /* Bill linear text segment and this branch instruction as per the above */                         \
     239      135834 :     ic_correction = pc - pc0 + 1UL - ic_correction;                                                     \
     240      135834 :     ic += ic_correction;                                                                                \
     241      135834 :     if( FD_UNLIKELY( ic_correction>cu ) ) goto sigcost; /* Note: untaken branches don't consume BTB */  \
     242      135834 :     cu -= ic_correction;                                                                                \
     243             :     /* At this point, cu>=0 */                                                                          \
     244      135153 :     ic_correction = 0UL;
     245             : 
     246             :   /* FIXME: debatable if it is better to do pc++ here or have the
     247             :      instruction implementations do it in their code path. */
     248             : 
     249             : # ifndef FD_VM_INTERP_EXE_TRACING_ENABLED /* Non-tracing path only, ~4% faster in some benchmarks, slower in others but more code footprint */
     250             : # define FD_VM_INTERP_BRANCH_END               \
     251      129261 :     pc++;                                      \
     252      129261 :     pc0 = pc; /* Start a new linear segment */ \
     253      129267 :     FD_VM_INTERP_INSTR_EXEC
     254             : # else /* Use this version when tracing or optimizing code footprint */
     255             : # define FD_VM_INTERP_BRANCH_END               \
     256           0 :     pc++;                                      \
     257           0 :     pc0 = pc; /* Start a new linear segment */ \
     258             :     /* FIXME: TEST sigsplit HERE */            \
     259           0 :     goto interp_exec
     260             : # endif
     261             : 
     262             :   /* FD_VM_INTERP_STACK_PUSH pushes reg[6:9] onto the shadow stack and
     263             :      advances reg[10] to a new user stack frame.  If there are no more
     264             :      stack frames available, will do a SIGSTACK. */
     265             : 
     266             :   /* FIXME: double check faulting is desired on stack overflow. */
     267             : 
     268             :   /* FIXME: a pre-belt-sanding FIXME implied the TLB should be updated
     269             :      to prevent byte code from accessing the stack outside its current
     270             :      stack frame.  But this would break the common practice of a
     271             :      function passing a pointer to something on its stack into a
     272             :      function that it calls:
     273             : 
     274             :        void foo( ... ) {
     275             :          ...
     276             :          int ret;
     277             :          bar( &ret );
     278             :          ...
     279             :        }
     280             : 
     281             :      So this probably shouldn't be done.  But, if it is in fact
     282             :      necessary, the TLB updates would be here and in pop. */
     283             : 
     284             :   /* FIXME: unvalidated code mucking with r10 */
     285             : 
     286           0 : # define FD_VM_INTERP_STACK_PUSH                                                                             \
     287          42 :   shadow[ frame_cnt ].r6  = reg[6];                                                                          \
     288          42 :   shadow[ frame_cnt ].r7  = reg[7];                                                                          \
     289          42 :   shadow[ frame_cnt ].r8  = reg[8];                                                                          \
     290          42 :   shadow[ frame_cnt ].r9  = reg[9];                                                                          \
     291          42 :   shadow[ frame_cnt ].r10 = reg[10];                                                                         \
     292          42 :   shadow[ frame_cnt ].pc  = pc;                                                                              \
     293          42 :   if( FD_UNLIKELY( ++frame_cnt>=frame_max ) ) goto sigstack; /* Note: untaken branches don't consume BTB */  \
     294          42 :   if( !fd_sbpf_dynamic_stack_frames_enabled( sbpf_version ) ) reg[10] += FD_VM_STACK_FRAME_SZ * 2UL;         \
     295           0 : 
     296             :   /* We subtract the heap cost in the BPF loader */
     297             : 
     298           0 :   goto interp_exec; /* Silly but to avoid unused label warning in some configurations */
     299        8217 : interp_exec:
     300             : 
     301             : # ifdef FD_VM_INTERP_EXE_TRACING_ENABLED
     302             :   /* Note: when tracing or optimizing for code footprint, all
     303             :      instruction execution starts here such that this is only point
     304             :      where exe tracing diagnostics are needed. */
     305           0 :   if( FD_UNLIKELY( pc>=text_cnt ) ) goto sigtext;
     306           0 :   fd_vm_trace_event_exe( vm->trace, pc, ic + ( pc - pc0 - ic_correction ), cu, reg, vm->text + pc, vm->text_cnt - pc, ic_correction, frame_cnt );
     307           0 : # endif
     308             : 
     309        8217 :   FD_VM_INTERP_INSTR_EXEC;
     310             : 
     311             :   /* 0x00 - 0x0f ******************************************************/
     312             : 
     313        8217 :   FD_VM_INTERP_INSTR_BEGIN(0x04) /* FD_SBPF_OP_ADD_IMM */
     314          36 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst + (int)imm );
     315          36 :   FD_VM_INTERP_INSTR_END;
     316             : 
     317          45 :   FD_VM_INTERP_INSTR_BEGIN(0x04depr) /* FD_SBPF_OP_ADD_IMM deprecated SIMD-0174 */
     318          45 :     reg[ dst ] = (ulong)(long)( (int)reg_dst + (int)imm );
     319          45 :   FD_VM_INTERP_INSTR_END;
     320             : 
     321         639 :   FD_VM_INTERP_BRANCH_BEGIN(0x05) /* FD_SBPF_OP_JA */
     322         633 :     pc += offset;
     323         633 :   FD_VM_INTERP_BRANCH_END;
     324             : 
     325       30108 :   FD_VM_INTERP_INSTR_BEGIN(0x07) /* FD_SBPF_OP_ADD64_IMM */
     326       30108 :     reg[ dst ] = reg_dst + (ulong)(long)(int)imm;
     327       30108 :   FD_VM_INTERP_INSTR_END;
     328             : 
     329          33 :   FD_VM_INTERP_INSTR_BEGIN(0x0c) /* FD_SBPF_OP_ADD_REG */
     330          33 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst + (int)reg_src );
     331          33 :   FD_VM_INTERP_INSTR_END;
     332             : 
     333          39 :   FD_VM_INTERP_INSTR_BEGIN(0x0cdepr) /* FD_SBPF_OP_ADD_REG deprecated SIMD-0174 */
     334          39 :     reg[ dst ] = (ulong)(long)( (int)reg_dst + (int)reg_src );
     335          39 :   FD_VM_INTERP_INSTR_END;
     336             : 
     337          78 :   FD_VM_INTERP_INSTR_BEGIN(0x0f) /* FD_SBPF_OP_ADD64_REG */
     338          78 :     reg[ dst ] = reg_dst + reg_src;
     339          78 :   FD_VM_INTERP_INSTR_END;
     340             : 
     341             :   /* 0x10 - 0x1f ******************************************************/
     342             : 
     343          36 :   FD_VM_INTERP_INSTR_BEGIN(0x14) /* FD_SBPF_OP_SUB_IMM */
     344          36 :     reg[ dst ] = (ulong)(uint)( (int)imm - (int)reg_dst );
     345          36 :   FD_VM_INTERP_INSTR_END;
     346             : 
     347          39 :   FD_VM_INTERP_INSTR_BEGIN(0x14depr) /* FD_SBPF_OP_SUB_IMM deprecated SIMD-0174 */
     348          39 :     reg[ dst ] = (ulong)(long)( (int)reg_dst - (int)imm );
     349          39 :   FD_VM_INTERP_INSTR_END;
     350             : 
     351        1254 :   FD_VM_INTERP_BRANCH_BEGIN(0x15) /* FD_SBPF_OP_JEQ_IMM */
     352        1242 :     pc += fd_ulong_if( reg_dst==(ulong)(long)(int)imm, offset, 0UL );
     353        1242 :   FD_VM_INTERP_BRANCH_END;
     354             : 
     355          33 :   FD_VM_INTERP_INSTR_BEGIN(0x17) /* FD_SBPF_OP_SUB64_IMM */
     356          33 :     reg[ dst ] = (ulong)(long)(int)imm - reg_dst;
     357          33 :   FD_VM_INTERP_INSTR_END;
     358             : 
     359          36 :   FD_VM_INTERP_INSTR_BEGIN(0x17depr) /* FD_SBPF_OP_SUB64_IMM deprecated SIMD-0174 */
     360          36 :     reg[ dst ] = reg_dst - (ulong)(long)(int)imm;
     361          36 :   FD_VM_INTERP_INSTR_END;
     362             : 
     363         117 :   FD_VM_INTERP_INSTR_BEGIN(0x18) /* FD_SBPF_OP_LDQ */
     364         117 :     pc++;
     365         117 :     ic_correction++;
     366             :     /* No need to check pc because it's already checked during validation.
     367             :        if( FD_UNLIKELY( pc>=text_cnt ) ) goto sigsplit; // Note: untaken branches don't consume BTB */
     368         117 :     reg[ dst ] = (ulong)((ulong)imm | ((ulong)fd_vm_instr_imm( text[ pc ] ) << 32));
     369         117 :   FD_VM_INTERP_INSTR_END;
     370             : 
     371          36 :   FD_VM_INTERP_INSTR_BEGIN(0x1c) /* FD_SBPF_OP_SUB_REG */
     372          36 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst - (int)reg_src );
     373          36 :   FD_VM_INTERP_INSTR_END;
     374             : 
     375          39 :   FD_VM_INTERP_INSTR_BEGIN(0x1cdepr) /* FD_SBPF_OP_SUB_REG deprecated SIMD-0174 */
     376          39 :     reg[ dst ] = (ulong)(long)( (int)reg_dst - (int)reg_src );
     377          39 :   FD_VM_INTERP_INSTR_END;
     378             : 
     379         648 :   FD_VM_INTERP_BRANCH_BEGIN(0x1d) /* FD_SBPF_OP_JEQ_REG */
     380         642 :     pc += fd_ulong_if( reg_dst==reg_src, offset, 0UL );
     381         642 :   FD_VM_INTERP_BRANCH_END;
     382             : 
     383       30093 :   FD_VM_INTERP_INSTR_BEGIN(0x1f) /* FD_SBPF_OP_SUB64_REG */
     384       30093 :     reg[ dst ] = reg_dst - reg_src;
     385       30093 :   FD_VM_INTERP_INSTR_END;
     386             : 
     387             :   /* 0x20 - 0x2f ******************************************************/
     388             : 
     389          42 :   FD_VM_INTERP_INSTR_BEGIN(0x24) /* FD_SBPF_OP_MUL_IMM */
     390          42 :     reg[ dst ] = (ulong)(long)( (int)reg_dst * (int)imm );
     391          42 :   FD_VM_INTERP_INSTR_END;
     392             : 
     393        3126 :   FD_VM_INTERP_BRANCH_BEGIN(0x25) /* FD_SBPF_OP_JGT_IMM */
     394        3096 :     pc += fd_ulong_if( reg_dst>(ulong)(long)(int)imm, offset, 0UL );
     395        3096 :   FD_VM_INTERP_BRANCH_END;
     396             : 
     397           9 :   FD_VM_INTERP_INSTR_BEGIN(0x27) { /* FD_SBPF_OP_STB */
     398           9 :     ulong vaddr = reg_dst + offset;
     399           9 :     ulong haddr = fd_vm_mem_haddr( vm, vaddr, sizeof(uchar), region_haddr, region_st_sz, 1, 0UL );
     400           9 :     if( FD_UNLIKELY( !haddr ) ) {
     401           6 :       vm->segv_vaddr       = vaddr;
     402           6 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_ST;
     403           6 :       vm->segv_access_len  = 1UL;
     404           6 :       goto sigsegv;
     405           6 :     } /* Note: untaken branches don't consume BTB */
     406           3 :     fd_vm_mem_st_1( haddr, (uchar)imm );
     407           3 :   }
     408           3 :   FD_VM_INTERP_INSTR_END;
     409             : 
     410          78 :   FD_VM_INTERP_INSTR_BEGIN(0x2c) { /* FD_SBPF_OP_LDXB */
     411          78 :     ulong vaddr = reg_src + offset;
     412          78 :     ulong haddr = fd_vm_mem_haddr( vm, vaddr, sizeof(uchar), region_haddr, region_ld_sz, 0, 0UL );
     413          78 :     if( FD_UNLIKELY( !haddr ) ) {
     414          24 :       vm->segv_vaddr       = vaddr;
     415          24 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_LD;
     416          24 :       vm->segv_access_len  = 1UL;
     417          24 :       goto sigsegv;
     418          24 :     } /* Note: untaken branches don't consume BTB */
     419          54 :     reg[ dst ] = fd_vm_mem_ld_1( haddr );
     420          54 :   }
     421          54 :   FD_VM_INTERP_INSTR_END;
     422             : 
     423        3117 :   FD_VM_INTERP_BRANCH_BEGIN(0x2d) /* FD_SBPF_OP_JGT_REG */
     424        3087 :     pc += fd_ulong_if( reg_dst>reg_src, offset, 0UL );
     425        3087 :   FD_VM_INTERP_BRANCH_END;
     426             : 
     427           9 :   FD_VM_INTERP_INSTR_BEGIN(0x2f) { /* FD_SBPF_OP_STXB */
     428           9 :     ulong vaddr = reg_dst + offset;
     429           9 :     ulong haddr = fd_vm_mem_haddr( vm, vaddr, sizeof(uchar), region_haddr, region_st_sz, 1, 0UL );
     430           9 :     if( FD_UNLIKELY( !haddr ) ) {
     431           6 :       vm->segv_vaddr       = vaddr;
     432           6 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_ST;
     433           6 :       vm->segv_access_len  = 1UL;
     434           6 :       goto sigsegv;
     435           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigrdonly */
     436           3 :     fd_vm_mem_st_1( haddr, (uchar)reg_src );
     437           3 :   }
     438           3 :   FD_VM_INTERP_INSTR_END;
     439             : 
     440          42 :   FD_VM_INTERP_INSTR_BEGIN(0x27depr) /* FD_SBPF_OP_MUL64_IMM */
     441          42 :     reg[ dst ] = (ulong)( (long)reg_dst * (long)(int)imm );
     442          42 :   FD_VM_INTERP_INSTR_END;
     443             : 
     444          39 :   FD_VM_INTERP_INSTR_BEGIN(0x2cdepr) /* FD_SBPF_OP_MUL_REG */
     445          39 :     reg[ dst ] = (ulong)(long)( (int)reg_dst * (int)reg_src );
     446          39 :   FD_VM_INTERP_INSTR_END;
     447             : 
     448       30078 :   FD_VM_INTERP_INSTR_BEGIN(0x2fdepr) /* FD_SBPF_OP_MUL64_REG */
     449       30078 :     reg[ dst ] = reg_dst * reg_src;
     450       30078 :   FD_VM_INTERP_INSTR_END;
     451             : 
     452             :   /* 0x30 - 0x3f ******************************************************/
     453             : 
     454          42 :   FD_VM_INTERP_INSTR_BEGIN(0x34) /* FD_SBPF_OP_DIV_IMM */
     455          42 :     /* FIXME: convert to a multiply at validation time (usually probably
     456          42 :        not worth it) */
     457          42 :     reg[ dst ] = (ulong)((uint)reg_dst / imm);
     458          42 :   FD_VM_INTERP_INSTR_END;
     459             : 
     460        6123 :   FD_VM_INTERP_BRANCH_BEGIN(0x35) /* FD_SBPF_OP_JGE_IMM */
     461        6063 :     pc += fd_ulong_if( reg_dst>=(ulong)(long)(int)imm, offset, 0UL );
     462        6063 :   FD_VM_INTERP_BRANCH_END;
     463             : 
     464           3 :   FD_VM_INTERP_INSTR_BEGIN(0x36) /* FD_SBPF_OP_UHMUL64_IMM */
     465           3 :     reg[ dst ] = (ulong)(( (uint128)reg_dst * (uint128)(ulong)imm ) >> 64 );
     466           3 :   FD_VM_INTERP_INSTR_END;
     467             : 
     468           9 :   FD_VM_INTERP_INSTR_BEGIN(0x37) { /* FD_SBPF_OP_STH */
     469           9 :     ulong vaddr   = reg_dst + offset;
     470           9 :     ulong haddr   = fd_vm_mem_haddr( vm, vaddr, sizeof(ushort), region_haddr, region_st_sz, 1, 0UL );
     471           9 :     int   sigsegv = !haddr;
     472           9 :     if( FD_UNLIKELY( sigsegv ) ) {
     473           6 :       vm->segv_vaddr       = vaddr;
     474           6 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_ST;
     475           6 :       vm->segv_access_len  = 2UL;
     476           6 :       goto sigsegv;
     477           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     478           3 :     fd_vm_mem_st_2( haddr, (ushort)imm );
     479           3 :   }
     480           3 :   FD_VM_INTERP_INSTR_END;
     481             : 
     482          96 :   FD_VM_INTERP_INSTR_BEGIN(0x3c) { /* FD_SBPF_OP_LDXH */
     483          96 :     ulong vaddr   = reg_src + offset;
     484          96 :     ulong haddr   = fd_vm_mem_haddr( vm, vaddr, sizeof(ushort), region_haddr, region_ld_sz, 0, 0UL );
     485          96 :     int   sigsegv = !haddr;
     486          96 :     if( FD_UNLIKELY( sigsegv ) ) {
     487          36 :       vm->segv_vaddr       = vaddr;
     488          36 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_LD;
     489          36 :       vm->segv_access_len  = 2UL;
     490          36 :       goto sigsegv; /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     491          36 :     }
     492          60 :     reg[ dst ] = fd_vm_mem_ld_2( haddr );
     493          60 :   }
     494          60 :   FD_VM_INTERP_INSTR_END;
     495             : 
     496       35532 :   FD_VM_INTERP_BRANCH_BEGIN(0x3d) /* FD_SBPF_OP_JGE_REG */
     497       35478 :     pc += fd_ulong_if( reg_dst>=reg_src, offset, 0UL );
     498       35478 :   FD_VM_INTERP_BRANCH_END;
     499             : 
     500           9 :   FD_VM_INTERP_INSTR_BEGIN(0x3f) { /* FD_SBPF_OP_STXH */
     501           9 :     ulong vaddr   = reg_dst + offset;
     502           9 :     ulong haddr   = fd_vm_mem_haddr( vm, vaddr, sizeof(ushort), region_haddr, region_st_sz, 1, 0UL );
     503           9 :     int   sigsegv = !haddr;
     504           9 :     if( FD_UNLIKELY( sigsegv ) ) {
     505           6 :       vm->segv_vaddr       = vaddr;
     506           6 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_ST;
     507           6 :       vm->segv_access_len  = 2UL;
     508           6 :       goto sigsegv;
     509           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     510           3 :     fd_vm_mem_st_2( haddr, (ushort)reg_src );
     511           3 :   }
     512           3 :   FD_VM_INTERP_INSTR_END;
     513             : 
     514           3 :   FD_VM_INTERP_INSTR_BEGIN(0x3e) /* FD_SBPF_OP_UHMUL64_REG */
     515           3 :     reg[ dst ] = (ulong)(( (uint128)reg_dst * (uint128)reg_src ) >> 64 );
     516           3 :   FD_VM_INTERP_INSTR_END;
     517             : 
     518          45 :   FD_VM_INTERP_INSTR_BEGIN(0x37depr) /* FD_SBPF_OP_DIV64_IMM */
     519          45 :     reg[ dst ] = reg_dst / (ulong)(long)(int)imm;
     520          45 :   FD_VM_INTERP_INSTR_END;
     521             : 
     522          57 :   FD_VM_INTERP_INSTR_BEGIN(0x3cdepr) /* FD_SBPF_OP_DIV_REG */
     523          57 :     if( FD_UNLIKELY( !(uint)reg_src ) ) goto sigfpe;
     524          42 :     reg[ dst ] = (ulong)((uint)reg_dst / (uint)reg_src);
     525          42 :   FD_VM_INTERP_INSTR_END;
     526             : 
     527       30072 :   FD_VM_INTERP_INSTR_BEGIN(0x3fdepr) /* FD_SBPF_OP_DIV64_REG */
     528       30072 :     if( FD_UNLIKELY( !reg_src ) ) goto sigfpe;
     529       30060 :     reg[ dst ] = reg_dst / reg_src;
     530       30060 :   FD_VM_INTERP_INSTR_END;
     531             : 
     532             :   /* 0x40 - 0x4f ******************************************************/
     533             : 
     534          51 :   FD_VM_INTERP_INSTR_BEGIN(0x44) /* FD_SBPF_OP_OR_IMM */
     535          51 :     reg[ dst ] = (ulong)( (uint)reg_dst | imm );
     536          51 :   FD_VM_INTERP_INSTR_END;
     537             : 
     538        1266 :   FD_VM_INTERP_BRANCH_BEGIN(0x45) /* FD_SBPF_OP_JSET_IMM */
     539        1254 :     pc += fd_ulong_if( !!(reg_dst & (ulong)(long)(int)imm), offset, 0UL );
     540        1254 :   FD_VM_INTERP_BRANCH_END;
     541             : 
     542          39 :   FD_VM_INTERP_INSTR_BEGIN(0x46) /* FD_SBPF_OP_UDIV32_IMM */
     543          39 :     reg[ dst ] = (ulong)( (uint)reg_dst / (uint)imm );
     544          39 :   FD_VM_INTERP_INSTR_END;
     545             : 
     546          51 :   FD_VM_INTERP_INSTR_BEGIN(0x47) /* FD_SBPF_OP_OR64_IMM */
     547          51 :     reg[ dst ] = reg_dst | (ulong)(long)(int)imm;
     548          51 :   FD_VM_INTERP_INSTR_END;
     549             : 
     550          57 :   FD_VM_INTERP_INSTR_BEGIN(0x4c) /* FD_SBPF_OP_OR_REG */
     551          57 :     reg[ dst ] = (ulong)(uint)( reg_dst | reg_src );
     552          57 :   FD_VM_INTERP_INSTR_END;
     553             : 
     554         663 :   FD_VM_INTERP_BRANCH_BEGIN(0x4d) /* FD_SBPF_OP_JSET_REG */
     555         657 :     pc += fd_ulong_if( !!(reg_dst & reg_src), offset, 0UL );
     556         657 :   FD_VM_INTERP_BRANCH_END;
     557             : 
     558          48 :   FD_VM_INTERP_INSTR_BEGIN(0x4e) /* FD_SBPF_OP_UDIV32_REG */
     559          48 :     if( FD_UNLIKELY( !(uint)reg_src ) ) goto sigfpe;
     560          36 :     reg[ dst ] = (ulong)( (uint)reg_dst / (uint)reg_src );
     561          36 :   FD_VM_INTERP_INSTR_END;
     562             : 
     563          57 :   FD_VM_INTERP_INSTR_BEGIN(0x4f) /* FD_SBPF_OP_OR64_REG */
     564          57 :     reg[ dst ] = reg_dst | reg_src;
     565          57 :   FD_VM_INTERP_INSTR_END;
     566             : 
     567             :   /* 0x50 - 0x5f ******************************************************/
     568             : 
     569          54 :   FD_VM_INTERP_INSTR_BEGIN(0x54) /* FD_SBPF_OP_AND_IMM */
     570          54 :     reg[ dst ] = (ulong)( (uint)reg_dst & imm );
     571          54 :   FD_VM_INTERP_INSTR_END;
     572             : 
     573       30669 :   FD_VM_INTERP_BRANCH_BEGIN(0x55) /* FD_SBPF_OP_JNE_IMM */
     574       30663 :     pc += fd_ulong_if( reg_dst!=(ulong)(long)(int)imm, offset, 0UL );
     575       30663 :   FD_VM_INTERP_BRANCH_END;
     576             : 
     577          39 :   FD_VM_INTERP_INSTR_BEGIN(0x56) /* FD_SBPF_OP_UDIV64_IMM */
     578          39 :     reg[ dst ] = reg_dst / (ulong)imm;
     579          39 :   FD_VM_INTERP_INSTR_END;
     580             : 
     581          63 :   FD_VM_INTERP_INSTR_BEGIN(0x57) /* FD_SBPF_OP_AND64_IMM */
     582          63 :     reg[ dst ] = reg_dst & (ulong)(long)(int)imm;
     583          63 :   FD_VM_INTERP_INSTR_END;
     584             : 
     585          60 :   FD_VM_INTERP_INSTR_BEGIN(0x5c) /* FD_SBPF_OP_AND_REG */
     586          60 :     reg[ dst ] = (ulong)(uint)( reg_dst & reg_src );
     587          60 :   FD_VM_INTERP_INSTR_END;
     588             : 
     589         657 :   FD_VM_INTERP_BRANCH_BEGIN(0x5d) /* FD_SBPF_OP_JNE_REG */
     590         651 :     pc += fd_ulong_if( reg_dst!=reg_src, offset, 0UL );
     591         651 :   FD_VM_INTERP_BRANCH_END;
     592             : 
     593          45 :   FD_VM_INTERP_INSTR_BEGIN(0x5e) /* FD_SBPF_OP_UDIV64_REG */
     594          45 :     if( FD_UNLIKELY( !reg_src ) ) goto sigfpe;
     595          36 :     reg[ dst ] = reg_dst / reg_src;
     596          36 :   FD_VM_INTERP_INSTR_END;
     597             : 
     598          48 :   FD_VM_INTERP_INSTR_BEGIN(0x5f) /* FD_SBPF_OP_AND64_REG */
     599          48 :     reg[ dst ] = reg_dst & reg_src;
     600          48 :   FD_VM_INTERP_INSTR_END;
     601             : 
     602             :   /* 0x60 - 0x6f ******************************************************/
     603             : 
     604             :   /* FIXME: CHECK THE CU COST MODEL FOR THESE (IS IT LIKE
     605             :      FD_VM_CONSUME_MEM AND NOT JUST FIXED) */
     606             :   /* FIXME: MEM TRACING DIAGNOSTICS GO IN HERE */
     607             : 
     608         453 :   FD_VM_INTERP_INSTR_BEGIN(0x64) /* FD_SBPF_OP_LSH_IMM */
     609         453 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L291 */
     610         453 :     reg[ dst ] = (ulong)( FD_RUST_UINT_WRAPPING_SHL( (uint)reg_dst, (uint)imm ) );
     611         453 :   FD_VM_INTERP_INSTR_END;
     612             : 
     613        3702 :   FD_VM_INTERP_BRANCH_BEGIN(0x65) /* FD_SBPF_OP_JSGT_IMM */
     614        3666 :     pc += fd_ulong_if( (long)reg_dst>(long)(int)imm, offset, 0UL );
     615        3666 :   FD_VM_INTERP_BRANCH_END;
     616             : 
     617          39 :   FD_VM_INTERP_INSTR_BEGIN(0x66) /* FD_SBPF_OP_UREM32_IMM */
     618          39 :     reg[ dst ] = (ulong)( (uint)reg_dst % (uint)imm );
     619          39 :   FD_VM_INTERP_INSTR_END;
     620             : 
     621         456 :   FD_VM_INTERP_INSTR_BEGIN(0x67) /* FD_SBPF_OP_LSH64_IMM */
     622         456 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L376 */
     623         456 :     reg[ dst ] = FD_RUST_ULONG_WRAPPING_SHL( reg_dst, imm );
     624         456 :   FD_VM_INTERP_INSTR_END;
     625             : 
     626         447 :   FD_VM_INTERP_INSTR_BEGIN(0x6c) /* FD_SBPF_OP_LSH_REG */
     627         447 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L292 */
     628         447 :     reg[ dst ] = (ulong)( FD_RUST_UINT_WRAPPING_SHL( (uint)reg_dst, reg_src ) );
     629         447 :   FD_VM_INTERP_INSTR_END;
     630             : 
     631        3108 :   FD_VM_INTERP_BRANCH_BEGIN(0x6d) /* FD_SBPF_OP_JSGT_REG */
     632        3078 :     pc += fd_ulong_if( (long)reg_dst>(long)reg_src, offset, 0UL );
     633        3078 :   FD_VM_INTERP_BRANCH_END;
     634             : 
     635          48 :   FD_VM_INTERP_INSTR_BEGIN(0x6e) /* FD_SBPF_OP_UREM32_REG */
     636          48 :     if( FD_UNLIKELY( !(uint)reg_src ) ) goto sigfpe;
     637          36 :     reg[ dst ] = (ulong)( (uint)reg_dst % (uint)reg_src );
     638          36 :   FD_VM_INTERP_INSTR_END;
     639             : 
     640           9 :   FD_VM_INTERP_INSTR_BEGIN(0x6f) /* FD_SBPF_OP_LSH64_REG */
     641           9 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L377 */
     642           9 :     reg[ dst ] = FD_RUST_ULONG_WRAPPING_SHL( reg_dst, reg_src );
     643           9 :   FD_VM_INTERP_INSTR_END;
     644             : 
     645             :   /* 0x70 - 0x7f ******************************************************/
     646             : 
     647           9 :   FD_VM_INTERP_INSTR_BEGIN(0x74) /* FD_SBPF_OP_RSH_IMM */
     648           9 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L293 */
     649           9 :     reg[ dst ] = (ulong)( FD_RUST_UINT_WRAPPING_SHR( (uint)reg_dst, imm ) );
     650           9 :   FD_VM_INTERP_INSTR_END;
     651             : 
     652        6714 :   FD_VM_INTERP_BRANCH_BEGIN(0x75) /* FD_SBPF_OP_JSGE_IMM */
     653        6648 :     pc += fd_ulong_if( (long)reg_dst>=(long)(int)imm, offset, 0UL );
     654        6648 :   FD_VM_INTERP_BRANCH_END;
     655             : 
     656          39 :   FD_VM_INTERP_INSTR_BEGIN(0x76) /* FD_SBPF_OP_UREM64_IMM */
     657          39 :     reg[ dst ] = reg_dst % (ulong)imm;
     658          39 :   FD_VM_INTERP_INSTR_END;
     659             : 
     660          12 :   FD_VM_INTERP_INSTR_BEGIN(0x77) /* FD_SBPF_OP_RSH64_IMM */
     661          12 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L378 */
     662          12 :     reg[ dst ] = FD_RUST_ULONG_WRAPPING_SHR( reg_dst, imm );
     663          12 :   FD_VM_INTERP_INSTR_END;
     664             : 
     665           9 :   FD_VM_INTERP_INSTR_BEGIN(0x7c) /* FD_SBPF_OP_RSH_REG */
     666           9 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L294 */
     667           9 :     reg[ dst ] = (ulong)( FD_RUST_UINT_WRAPPING_SHR( (uint)reg_dst, (uint)reg_src ) );
     668           9 :   FD_VM_INTERP_INSTR_END;
     669             : 
     670        5508 :   FD_VM_INTERP_BRANCH_BEGIN(0x7d) /* FD_SBPF_OP_JSGE_REG */
     671        5454 :     pc += fd_ulong_if( (long)reg_dst>=(long)reg_src, offset, 0UL );
     672        5454 :   FD_VM_INTERP_BRANCH_END;
     673             : 
     674          45 :   FD_VM_INTERP_INSTR_BEGIN(0x7e) /* FD_SBPF_OP_UREM64_REG */
     675          45 :     if( FD_UNLIKELY( !reg_src ) ) goto sigfpe;
     676          36 :     reg[ dst ] = reg_dst % reg_src;
     677          36 :   FD_VM_INTERP_INSTR_END;
     678             : 
     679           9 :   FD_VM_INTERP_INSTR_BEGIN(0x7f) /* FD_SBPF_OP_RSH64_REG */
     680           9 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L379 */
     681           9 :     reg[ dst ] = FD_RUST_ULONG_WRAPPING_SHR( reg_dst, reg_src );
     682           9 :   FD_VM_INTERP_INSTR_END;
     683             : 
     684             :   /* 0x80-0x8f ********************************************************/
     685             : 
     686           3 :   FD_VM_INTERP_INSTR_BEGIN(0x84) /* FD_SBPF_OP_NEG */
     687           3 :     reg[ dst ] = (ulong)( -(uint)reg_dst );
     688           3 :   FD_VM_INTERP_INSTR_END;
     689             : 
     690           0 :   FD_VM_INTERP_BRANCH_BEGIN(0x85) /* FD_SBPF_OP_CALL_IMM */
     691           0 :     /* imm has already been validated */
     692           0 :     FD_VM_INTERP_STACK_PUSH;
     693           0 :     pc = (ulong)( (long)pc + (long)(int)imm );
     694           0 :   FD_VM_INTERP_BRANCH_END;
     695             : 
     696           9 :   FD_VM_INTERP_BRANCH_BEGIN(0x85depr) { /* FD_SBPF_OP_CALL_IMM */
     697             : 
     698           9 :     fd_sbpf_syscalls_t const * syscall = imm!=fd_sbpf_syscalls_key_null() ? fd_sbpf_syscalls_query_const( syscalls, (ulong)imm, NULL ) : NULL;
     699           9 :     if( FD_UNLIKELY( !syscall ) ) { /* Optimize for the syscall case */
     700             : 
     701             :       /* Note we do the stack push before updating the pc(*). This implies
     702             :        that the call stack frame gets allocated _before_ checking if the
     703             :        call target is valid.  It would be fine to switch the order
     704             :        though such would change the precise faulting semantics of
     705             :        sigtextbr and sigstack.
     706             : 
     707             :        (*)but after checking calldests, see point below. */
     708             : 
     709             :       /* Agave's order of checks
     710             :          (https://github.com/solana-labs/rbpf/blob/v0.8.5/src/interpreter.rs#L486):
     711             :           1. Lookup imm hash in FunctionRegistry (calldests_test is our equivalent)
     712             :           2. Push stack frame
     713             :           3. Check PC
     714             :           4. Update PC
     715             : 
     716             :           Following this precisely is impossible as our PC check also
     717             :           serves as a bounds check for the calldests_test call. So we
     718             :           have to perform step 3 before step 1. The following
     719             :           is a best-effort implementation that should match the VM state
     720             :           in all ways except error code. */
     721             : 
     722             :       /* Special case to handle entrypoint.
     723             :          ebpf::hash_symbol_name(b"entrypoint") = 0xb00c380, and
     724             :          fd_pchash_inverse( 0xb00c380U ) = 0x71e3cf81U */
     725           6 :       if( FD_UNLIKELY( imm==0x71e3cf81U ) ) {
     726           0 :         FD_VM_INTERP_STACK_PUSH;
     727           0 :         pc = entry_pc - 1;
     728           6 :       } else {
     729           6 :         ulong target_pc = (ulong)fd_pchash_inverse( imm );
     730           6 :         if( FD_UNLIKELY( target_pc>=text_cnt ) ) {
     731           6 :           goto sigillbr; /* different return between 0x85 and 0x8d */
     732           6 :         }
     733           0 :         if( FD_UNLIKELY( !fd_sbpf_calldests_test( calldests, target_pc ) ) ) {
     734           0 :           goto sigillbr;
     735           0 :         }
     736           0 :         FD_VM_INTERP_STACK_PUSH;
     737           0 :         pc = target_pc - 1;
     738           0 :       }
     739             : 
     740           6 :     } else {
     741             : 
     742           3 :       FD_VM_INTERP_SYSCALL_EXEC;
     743             : 
     744           3 :     }
     745           9 :   } FD_VM_INTERP_BRANCH_END;
     746             : 
     747          39 :   FD_VM_INTERP_INSTR_BEGIN(0x86) /* FD_SBPF_OP_LMUL32_IMM */
     748          39 :     reg[ dst ] = (ulong)( (uint)reg_dst * imm );
     749          39 :   FD_VM_INTERP_INSTR_END;
     750             : 
     751           9 :   FD_VM_INTERP_INSTR_BEGIN(0x87) { /* FD_SBPF_OP_STW */
     752           9 :     ulong vaddr   = reg_dst + offset;
     753           9 :     ulong haddr   = fd_vm_mem_haddr( vm, vaddr, sizeof(uint), region_haddr, region_st_sz, 1, 0UL );
     754           9 :     int   sigsegv = !haddr;
     755           9 :     if( FD_UNLIKELY( sigsegv ) ) {
     756           6 :       vm->segv_vaddr       = vaddr;
     757           6 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_ST;
     758           6 :       vm->segv_access_len  = 4UL;
     759           6 :       goto sigsegv;
     760           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     761           3 :     fd_vm_mem_st_4( haddr, imm );
     762           3 :   } FD_VM_INTERP_INSTR_END;
     763             : 
     764           3 :   FD_VM_INTERP_INSTR_BEGIN(0x87depr) /* FD_SBPF_OP_NEG64 deprecated */
     765           3 :     reg[ dst ] = -reg_dst;
     766           3 :   FD_VM_INTERP_INSTR_END;
     767             : 
     768         108 :   FD_VM_INTERP_INSTR_BEGIN(0x8c) { /* FD_SBPF_OP_LDXW */
     769         108 :     ulong vaddr   = reg_src + offset;
     770         108 :     ulong haddr   = fd_vm_mem_haddr( vm, vaddr, sizeof(uint), region_haddr, region_ld_sz, 0, 0UL );
     771         108 :     int   sigsegv = !haddr;
     772         108 :     if( FD_UNLIKELY( sigsegv ) ) {
     773          48 :       vm->segv_vaddr       = vaddr;
     774          48 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_LD;
     775          48 :       vm->segv_access_len  = 4UL;
     776          48 :       goto sigsegv; /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     777          48 :     }
     778          60 :     reg[ dst ] = fd_vm_mem_ld_4( haddr );
     779          60 :   }
     780          60 :   FD_VM_INTERP_INSTR_END;
     781             : 
     782           0 :   FD_VM_INTERP_BRANCH_BEGIN(0x8d) { /* FD_SBPF_OP_CALL_REG */
     783           0 :     FD_VM_INTERP_STACK_PUSH;
     784           0 :     ulong target_pc = (reg_src - vm->text_off) / 8UL;
     785           0 :     if( FD_UNLIKELY( target_pc>=text_cnt ) ) goto sigtextbr;
     786           0 :     if( FD_UNLIKELY( !fd_sbpf_calldests_test( calldests, target_pc ) ) ) {
     787           0 :       goto sigillbr;
     788           0 :     }
     789           0 :     pc = target_pc - 1;
     790           0 :   } FD_VM_INTERP_BRANCH_END;
     791             : 
     792          42 :   FD_VM_INTERP_BRANCH_BEGIN(0x8ddepr) { /* FD_SBPF_OP_CALL_REG */
     793             : 
     794          42 :     FD_VM_INTERP_STACK_PUSH;
     795             : 
     796          42 :     ulong vaddr = fd_sbpf_callx_uses_src_reg_enabled( sbpf_version ) ? reg_src : reg[ imm & 15U ];
     797             : 
     798             :     /* Notes: Agave checks region and target_pc before updating the pc.
     799             :        To match their state, we do the same, even though we could simply
     800             :        update the pc and let BRANCH_END fail.
     801             :        Also, Agave doesn't check alignment. */
     802             : 
     803          42 :     ulong region = vaddr >> 32;
     804             :     /* ulong align  = vaddr & 7UL; */
     805          42 :     ulong target_pc = ((vaddr & FD_VM_OFFSET_MASK) - vm->text_off) / 8UL;
     806          42 :     if( FD_UNLIKELY( (region!=1UL) | (target_pc>=text_cnt) ) ) goto sigtextbr; /* Note: untaken branches don't consume BTB */
     807           0 :     pc = target_pc - 1;
     808             : 
     809           0 :   } FD_VM_INTERP_BRANCH_END;
     810             : 
     811          33 :   FD_VM_INTERP_INSTR_BEGIN(0x8e) /* FD_SBPF_OP_LMUL32_REG */
     812          33 :     reg[ dst ] = (ulong)( (uint)reg_dst * (uint)reg_src );
     813          33 :   FD_VM_INTERP_INSTR_END;
     814             : 
     815           9 :   FD_VM_INTERP_INSTR_BEGIN(0x8f) { /* FD_SBPF_OP_STXW */
     816           9 :     ulong vaddr    = reg_dst + offset;
     817           9 :     ulong haddr    = fd_vm_mem_haddr( vm, vaddr, sizeof(uint), region_haddr, region_st_sz, 1, 0UL );
     818           9 :     int   sigsegv  = !haddr;
     819           9 :     if( FD_UNLIKELY( sigsegv ) ) {
     820           6 :       vm->segv_vaddr       = vaddr;
     821           6 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_ST;
     822           6 :       vm->segv_access_len  = 4UL;
     823           6 :       goto sigsegv;
     824           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     825           3 :     fd_vm_mem_st_4( haddr, (uint)reg_src );
     826           3 :   }
     827           3 :   FD_VM_INTERP_INSTR_END;
     828             : 
     829             :   /* 0x90 - 0x9f ******************************************************/
     830             : 
     831          42 :   FD_VM_INTERP_INSTR_BEGIN(0x94) /* FD_SBPF_OP_MOD_IMM */
     832          42 :     reg[ dst ] = (ulong)( (uint)reg_dst % imm );
     833          42 :   FD_VM_INTERP_INSTR_END;
     834             : 
     835           0 :   FD_VM_INTERP_BRANCH_BEGIN(0x95) { /* FD_SBPF_OP_SYSCALL */
     836             :     /* imm has already been validated */
     837           0 :     fd_sbpf_syscalls_t const * syscall = fd_sbpf_syscalls_query_const( syscalls, (ulong)imm, NULL );
     838           0 :     if( FD_UNLIKELY( !syscall ) ) goto sigillbr;
     839             : 
     840           0 :     FD_VM_INTERP_SYSCALL_EXEC;
     841             : 
     842           0 :   } FD_VM_INTERP_BRANCH_END;
     843             : 
     844          39 :   FD_VM_INTERP_INSTR_BEGIN(0x96) /* FD_SBPF_OP_LMUL64_IMM */
     845          39 :     reg[ dst ] = reg_dst * (ulong)(long)(int)imm;
     846          39 :   FD_VM_INTERP_INSTR_END;
     847             : 
     848           9 :   FD_VM_INTERP_INSTR_BEGIN(0x97) { /* FD_SBPF_OP_STQ */
     849           9 :     ulong vaddr   = reg_dst + offset;
     850           9 :     ulong haddr   = fd_vm_mem_haddr( vm, vaddr, sizeof(ulong), region_haddr, region_st_sz, 1, 0UL );
     851           9 :     int   sigsegv = !haddr;
     852           9 :     if( FD_UNLIKELY( sigsegv ) ) {
     853           6 :       vm->segv_vaddr       = vaddr;
     854           6 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_ST;
     855           6 :       vm->segv_access_len  = 8UL;
     856           6 :       goto sigsegv;
     857           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     858           3 :     fd_vm_mem_st_8( haddr, (ulong)(long)(int)imm );
     859           3 :   }
     860           3 :   FD_VM_INTERP_INSTR_END;
     861             : 
     862          84 :   FD_VM_INTERP_INSTR_BEGIN(0x9c) { /* FD_SBPF_OP_LDXQ */
     863          84 :     ulong vaddr   = reg_src + offset;
     864          84 :     ulong haddr   = fd_vm_mem_haddr( vm, vaddr, sizeof(ulong), region_haddr, region_ld_sz, 0, 0UL );
     865          84 :     int   sigsegv = !haddr;
     866          84 :     if( FD_UNLIKELY( sigsegv ) ) {
     867          42 :       vm->segv_vaddr       = vaddr;
     868          42 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_LD;
     869          42 :       vm->segv_access_len  = 8UL;
     870          42 :       goto sigsegv; /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     871          42 :     }
     872          42 :     reg[ dst ] = fd_vm_mem_ld_8( haddr );
     873          42 :   }
     874          42 :   FD_VM_INTERP_INSTR_END;
     875             : 
     876        5847 :   FD_VM_INTERP_BRANCH_BEGIN(0x9d) /* FD_SBPF_OP_EXIT */
     877        5844 :       /* Agave JIT VM exit implementation analysis below.
     878        5844 : 
     879        5844 :        Agave references:
     880        5844 :        https://github.com/solana-labs/rbpf/blob/v0.8.5/src/interpreter.rs#L503-L509
     881        5844 :        https://github.com/solana-labs/rbpf/blob/v0.8.5/src/jit.rs#L697-L702 */
     882        5844 :     if( FD_UNLIKELY( !frame_cnt ) ) goto sigexit; /* Exit program */
     883           0 :     frame_cnt--;
     884           0 :     reg[6]   = shadow[ frame_cnt ].r6;
     885           0 :     reg[7]   = shadow[ frame_cnt ].r7;
     886           0 :     reg[8]   = shadow[ frame_cnt ].r8;
     887           0 :     reg[9]   = shadow[ frame_cnt ].r9;
     888           0 :     reg[10]  = shadow[ frame_cnt ].r10;
     889           0 :     pc       = shadow[ frame_cnt ].pc;
     890           0 :   FD_VM_INTERP_BRANCH_END;
     891             : 
     892          57 :   FD_VM_INTERP_INSTR_BEGIN(0x9e) /* FD_SBPF_OP_LMUL64_REG */
     893          57 :     reg[ dst ] = reg_dst * reg_src;
     894          57 :   FD_VM_INTERP_INSTR_END;
     895             : 
     896           9 :   FD_VM_INTERP_INSTR_BEGIN(0x9f) { /* FD_SBPF_OP_STXQ */
     897           9 :     ulong vaddr   = reg_dst + offset;
     898           9 :     ulong haddr   = fd_vm_mem_haddr( vm, vaddr, sizeof(ulong), region_haddr, region_st_sz, 1, 0UL );
     899           9 :     int   sigsegv = !haddr;
     900           9 :     if( FD_UNLIKELY( sigsegv ) ) {
     901           6 :       vm->segv_vaddr       = vaddr;
     902           6 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_ST;
     903           6 :       vm->segv_access_len  = 8UL;
     904           6 :       goto sigsegv;
     905           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     906           3 :     fd_vm_mem_st_8( haddr, reg_src );
     907           3 :   }
     908           3 :   FD_VM_INTERP_INSTR_END;
     909             : 
     910          42 :   FD_VM_INTERP_INSTR_BEGIN(0x97depr) /* FD_SBPF_OP_MOD64_IMM */
     911          42 :     reg[ dst ] = reg_dst % (ulong)(long)(int)imm;
     912          42 :   FD_VM_INTERP_INSTR_END;
     913             : 
     914          57 :   FD_VM_INTERP_INSTR_BEGIN(0x9cdepr) /* FD_SBPF_OP_MOD_REG */
     915          57 :     if( FD_UNLIKELY( !(uint)reg_src ) ) goto sigfpe;
     916          42 :     reg[ dst ] = (ulong)( ((uint)reg_dst % (uint)reg_src) );
     917          42 :   FD_VM_INTERP_INSTR_END;
     918             : 
     919          54 :   FD_VM_INTERP_INSTR_BEGIN(0x9fdepr) /* FD_SBPF_OP_MOD64_REG */
     920          54 :     if( FD_UNLIKELY( !reg_src ) ) goto sigfpe;
     921          42 :     reg[ dst ] = reg_dst % reg_src;
     922          42 :   FD_VM_INTERP_INSTR_END;
     923             : 
     924             :   /* 0xa0 - 0xaf ******************************************************/
     925             : 
     926           9 :   FD_VM_INTERP_INSTR_BEGIN(0xa4) /* FD_SBPF_OP_XOR_IMM */
     927           9 :     reg[ dst ] = (ulong)( (uint)reg_dst ^ imm );
     928           9 :   FD_VM_INTERP_INSTR_END;
     929             : 
     930        3126 :   FD_VM_INTERP_BRANCH_BEGIN(0xa5) /* FD_SBPF_OP_JLT_IMM */
     931        3096 :     pc += fd_ulong_if( reg_dst<(ulong)(long)(int)imm, offset, 0UL );
     932        3096 :   FD_VM_INTERP_BRANCH_END;
     933             : 
     934           9 :   FD_VM_INTERP_INSTR_BEGIN(0xa7) /* FD_SBPF_OP_XOR64_IMM */
     935           9 :     reg[ dst ] = reg_dst ^ (ulong)(long)(int)imm;
     936           9 :   FD_VM_INTERP_INSTR_END;
     937             : 
     938           9 :   FD_VM_INTERP_INSTR_BEGIN(0xac) /* FD_SBPF_OP_XOR_REG */
     939           9 :     reg[ dst ] = (ulong)(uint)( reg_dst ^ reg_src );
     940           9 :   FD_VM_INTERP_INSTR_END;
     941             : 
     942        2517 :   FD_VM_INTERP_BRANCH_BEGIN(0xad) /* FD_SBPF_OP_JLT_REG */
     943        2493 :     pc += fd_ulong_if( reg_dst<reg_src, offset, 0UL );
     944        2493 :   FD_VM_INTERP_BRANCH_END;
     945             : 
     946          21 :   FD_VM_INTERP_INSTR_BEGIN(0xaf) /* FD_SBPF_OP_XOR64_REG */
     947          21 :     reg[ dst ] = reg_dst ^ reg_src;
     948          21 :   FD_VM_INTERP_INSTR_END;
     949             : 
     950             :   /* 0xb0 - 0xbf ******************************************************/
     951             : 
     952         330 :   FD_VM_INTERP_INSTR_BEGIN(0xb4) /* FD_SBPF_OP_MOV_IMM */
     953         330 :     reg[ dst ] = (ulong)imm;
     954         330 :   FD_VM_INTERP_INSTR_END;
     955             : 
     956        6126 :   FD_VM_INTERP_BRANCH_BEGIN(0xb5) /* FD_SBPF_OP_JLE_IMM */
     957        6066 :     pc += fd_ulong_if( reg_dst<=(ulong)(long)(int)imm, offset, 0UL );
     958        6066 :   FD_VM_INTERP_BRANCH_END;
     959             : 
     960           3 :   FD_VM_INTERP_INSTR_BEGIN(0xb6) /* FD_SBPF_OP_SHMUL64_IMM */
     961           3 :     reg[ dst ] = (ulong)(( (int128)(long)reg_dst * (int128)(long)(int)imm ) >> 64 );
     962           3 :   FD_VM_INTERP_INSTR_END;
     963             : 
     964       60120 :   FD_VM_INTERP_INSTR_BEGIN(0xb7) /* FD_SBPF_OP_MOV64_IMM */
     965       60120 :     reg[ dst ] = (ulong)(long)(int)imm;
     966       60120 :   FD_VM_INTERP_INSTR_END;
     967             : 
     968           3 :   FD_VM_INTERP_INSTR_BEGIN(0xbc) /* FD_SBPF_OP_MOV_REG */
     969           3 :     reg[ dst ] = (ulong)(long)(int)reg_src;
     970           3 :   FD_VM_INTERP_INSTR_END;
     971             : 
     972          15 :   FD_VM_INTERP_INSTR_BEGIN(0xbcdepr) /* FD_SBPF_OP_MOV_REG deprecated SIMD-1074 */
     973          15 :     reg[ dst ] = (ulong)(uint)reg_src;
     974          15 :   FD_VM_INTERP_INSTR_END;
     975             : 
     976        4917 :   FD_VM_INTERP_BRANCH_BEGIN(0xbd) /* FD_SBPF_OP_JLE_REG */
     977        4869 :     pc += fd_ulong_if( reg_dst<=reg_src, offset, 0UL );
     978        4869 :   FD_VM_INTERP_BRANCH_END;
     979             : 
     980           3 :   FD_VM_INTERP_INSTR_BEGIN(0xbe) /* FD_SBPF_OP_SHMUL64_REG */
     981           3 :     reg[ dst ] = (ulong)(( (int128)(long)reg_dst * (int128)(long)reg_src ) >> 64 );
     982           3 :   FD_VM_INTERP_INSTR_END;
     983             : 
     984       60036 :   FD_VM_INTERP_INSTR_BEGIN(0xbf) /* FD_SBPF_OP_MOV64_REG */
     985       60036 :     reg[ dst ] = reg_src;
     986       60036 :   FD_VM_INTERP_INSTR_END;
     987             : 
     988             :   /* 0xc0 - 0xcf ******************************************************/
     989             : 
     990         147 :   FD_VM_INTERP_INSTR_BEGIN(0xc4) /* FD_SBPF_OP_ARSH_IMM */
     991         147 :     reg[ dst ] = (ulong)(uint)( FD_RUST_INT_WRAPPING_SHR( (int)reg_dst, imm ) );
     992         147 :   FD_VM_INTERP_INSTR_END;
     993             : 
     994        3102 :   FD_VM_INTERP_BRANCH_BEGIN(0xc5) /* FD_SBPF_OP_JSLT_IMM */ /* FIXME: CHECK IMM SIGN EXTENSION */
     995        3072 :     pc += fd_ulong_if( (long)reg_dst<(long)(int)imm, offset, 0UL );
     996        3072 :   FD_VM_INTERP_BRANCH_END;
     997             : 
     998          45 :   FD_VM_INTERP_INSTR_BEGIN(0xc6) /* FD_SBPF_OP_SDIV32_IMM */
     999          45 :     if( FD_UNLIKELY( ((int)reg_dst==INT_MIN) & ((int)imm==-1) ) ) goto sigfpeof;
    1000          39 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst / (int)imm );
    1001          39 :   FD_VM_INTERP_INSTR_END;
    1002             : 
    1003         135 :   FD_VM_INTERP_INSTR_BEGIN(0xc7) /* FD_SBPF_OP_ARSH64_IMM */
    1004         135 :     reg[ dst ] = (ulong)( FD_RUST_LONG_WRAPPING_SHR( (long)reg_dst, imm ) );
    1005         135 :   FD_VM_INTERP_INSTR_END;
    1006             : 
    1007          96 :   FD_VM_INTERP_INSTR_BEGIN(0xcc) /* FD_SBPF_OP_ARSH_REG */
    1008          96 :     reg[ dst ] = (ulong)(uint)( FD_RUST_INT_WRAPPING_SHR( (int)reg_dst, (uint)reg_src ) );
    1009          96 :   FD_VM_INTERP_INSTR_END;
    1010             : 
    1011        3108 :   FD_VM_INTERP_BRANCH_BEGIN(0xcd) /* FD_SBPF_OP_JSLT_REG */
    1012        3078 :     pc += fd_ulong_if( (long)reg_dst<(long)reg_src, offset, 0UL );
    1013        3078 :   FD_VM_INTERP_BRANCH_END;
    1014             : 
    1015          54 :   FD_VM_INTERP_INSTR_BEGIN(0xce) /* FD_SBPF_OP_SDIV32_REG */
    1016          54 :     if( FD_UNLIKELY( !(int)reg_src ) ) goto sigfpe;
    1017          42 :     if( FD_UNLIKELY( ((int)reg_dst==INT_MIN) & ((int)reg_src==-1) ) ) goto sigfpeof;
    1018          36 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst / (int)reg_src );
    1019          36 :   FD_VM_INTERP_INSTR_END;
    1020             : 
    1021          93 :   FD_VM_INTERP_INSTR_BEGIN(0xcf) /* FD_SBPF_OP_ARSH64_REG */
    1022          93 :     reg[ dst ] = (ulong)( FD_RUST_LONG_WRAPPING_SHR( (long)reg_dst, reg_src ) );
    1023          93 :   FD_VM_INTERP_INSTR_END;
    1024             : 
    1025             :   /* 0xd0 - 0xdf ******************************************************/
    1026             : 
    1027          21 :   FD_VM_INTERP_INSTR_BEGIN(0xd4) /* FD_SBPF_OP_END_LE */
    1028          21 :     switch( imm ) {
    1029           9 :     case 16U: reg[ dst ] = (ushort)reg_dst; break;
    1030           3 :     case 32U: reg[ dst ] = (uint)  reg_dst; break;
    1031           3 :     case 64U:                               break;
    1032           6 :     default: goto siginv;
    1033          21 :     }
    1034          15 :   FD_VM_INTERP_INSTR_END;
    1035             : 
    1036        2460 :   FD_VM_INTERP_BRANCH_BEGIN(0xd5) /* FD_SBPF_OP_JSLE_IMM */
    1037        2436 :     pc += fd_ulong_if( (long)reg_dst<=(long)(int)imm, offset, 0UL );
    1038        2436 :   FD_VM_INTERP_BRANCH_END;
    1039             : 
    1040          42 :   FD_VM_INTERP_INSTR_BEGIN(0xd6) /* FD_SBPF_OP_SDIV64_IMM */
    1041          42 :     if( FD_UNLIKELY( ((long)reg_dst==LONG_MIN) & ((long)(int)imm==-1L) ) ) goto sigfpeof;
    1042          39 :     reg[ dst ] = (ulong)( (long)reg_dst / (long)(int)imm );
    1043          39 :   FD_VM_INTERP_INSTR_END;
    1044             : 
    1045          75 :   FD_VM_INTERP_INSTR_BEGIN(0xdc) /* FD_SBPF_OP_END_BE */
    1046          75 :     switch( imm ) {
    1047          42 :     case 16U: reg[ dst ] = (ulong)fd_ushort_bswap( (ushort)reg_dst ); break;
    1048          12 :     case 32U: reg[ dst ] = (ulong)fd_uint_bswap  ( (uint)  reg_dst ); break;
    1049           9 :     case 64U: reg[ dst ] =        fd_ulong_bswap ( (ulong) reg_dst ); break;
    1050          12 :     default: goto siginv;
    1051          75 :     }
    1052          63 :   FD_VM_INTERP_INSTR_END;
    1053             : 
    1054        1854 :   FD_VM_INTERP_BRANCH_BEGIN(0xdd) /* FD_SBPF_OP_JSLE_REG */
    1055        1836 :     pc += fd_ulong_if( (long)reg_dst<=(long)reg_src, offset, 0UL );
    1056        1836 :   FD_VM_INTERP_BRANCH_END;
    1057             : 
    1058          48 :   FD_VM_INTERP_INSTR_BEGIN(0xde) /* FD_SBPF_OP_SDIV64_REG */
    1059          48 :     if( FD_UNLIKELY( !reg_src ) ) goto sigfpe;
    1060          39 :     if( FD_UNLIKELY( ((long)reg_dst==LONG_MIN) & ((long)reg_src==-1L) ) ) goto sigfpeof;
    1061          36 :     reg[ dst ] = (ulong)( (long)reg_dst / (long)reg_src );
    1062          36 :   FD_VM_INTERP_INSTR_END;
    1063             : 
    1064             :   /* 0xe0 - 0xef ******************************************************/
    1065             : 
    1066          45 :   FD_VM_INTERP_INSTR_BEGIN(0xe6) /* FD_SBPF_OP_SREM32_IMM */
    1067          45 :     if( FD_UNLIKELY( ((int)reg_dst==INT_MIN) & ((int)imm==-1) ) ) goto sigfpeof;
    1068          39 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst % (int)imm );
    1069          39 :   FD_VM_INTERP_INSTR_END;
    1070             : 
    1071          54 :   FD_VM_INTERP_INSTR_BEGIN(0xee) /* FD_SBPF_OP_SREM32_REG */
    1072          54 :     if( FD_UNLIKELY( !(int)reg_src ) ) goto sigfpe;
    1073          42 :     if( FD_UNLIKELY( ((int)reg_dst==INT_MIN) & ((int)reg_src==-1) ) ) goto sigfpeof;
    1074          36 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst % (int)reg_src );
    1075          36 :   FD_VM_INTERP_INSTR_END;
    1076             : 
    1077             :   /* 0xf0 - 0xff ******************************************************/
    1078             : 
    1079          42 :   FD_VM_INTERP_INSTR_BEGIN(0xf6) /* FD_SBPF_OP_SREM64_IMM */
    1080          42 :     if( FD_UNLIKELY( ((long)reg_dst==LONG_MIN) & ((long)(int)imm==-1L) ) ) goto sigfpeof;
    1081          39 :     reg[ dst ] = (ulong)( (long)reg_dst % (long)(int)imm );
    1082          39 :   FD_VM_INTERP_INSTR_END;
    1083             : 
    1084          21 :   FD_VM_INTERP_INSTR_BEGIN(0xf7) /* FD_SBPF_OP_HOR64 */
    1085          21 :     reg[ dst ] = reg_dst | (((ulong)imm) << 32);
    1086          21 :   FD_VM_INTERP_INSTR_END;
    1087             : 
    1088          48 :   FD_VM_INTERP_INSTR_BEGIN(0xfe) /* FD_SBPF_OP_SREM64_REG */
    1089          48 :     if( FD_UNLIKELY( !reg_src ) ) goto sigfpe;
    1090          39 :     if( FD_UNLIKELY( ((long)reg_dst==LONG_MIN) & ((long)reg_src==-1L) ) ) goto sigfpeof;
    1091          36 :     reg[ dst ] = (ulong)( (long)reg_dst % (long)reg_src );
    1092          36 :   FD_VM_INTERP_INSTR_END;
    1093             : 
    1094             :   /* FIXME: sigbus/sigrdonly are mapped to sigsegv for simplicity
    1095             :      currently but could be enabled if desired. */
    1096             : 
    1097             :   /* Note: sigtextbr is for sigtext errors that occur on branching
    1098             :      instructions (i.e., prefixed with FD_VM_INTERP_BRANCH_BEGIN).
    1099             :      We skip a repeat ic accumulation in FD_VM_INTERP_FAULT */
    1100             : 
    1101             :   /* FD_VM_INTERP_FAULT accumulates to ic and cu all non-faulting
    1102             :      instructions preceeding a fault generated by a non-branching
    1103             :      instruction.  When a non-branching instruction faults, pc is at the
    1104             :      instruction and the number of non-branching instructions that have
    1105             :      not yet been reflected in ic and cu is:
    1106             : 
    1107             :        pc - pc0 + 1 - ic_correction
    1108             : 
    1109             :      as per the accounting described above. +1 to include the faulting
    1110             :      instruction itself.
    1111             : 
    1112             :      Note that, for a sigtext caused by a branch instruction, pc0==pc
    1113             :      (from the BRANCH_END) and ic_correction==0 (from the BRANCH_BEGIN)
    1114             :      such that the below does not change the already current values in
    1115             :      ic and cu.  Thus it also "does the right thing" in both the
    1116             :      non-branching and branching cases for sigtext.  The same applies to
    1117             :      sigsplit. */
    1118             : 
    1119           0 : #define FD_VM_INTERP_FAULT                                                                 \
    1120        1626 :   ic_correction = pc - pc0 + 1UL - ic_correction;                                          \
    1121        1626 :   ic += ic_correction;                                                                     \
    1122        1626 :   if ( FD_UNLIKELY( ic_correction > cu ) ) err = FD_VM_ERR_EBPF_EXCEEDED_MAX_INSTRUCTIONS; \
    1123        1626 :   cu -= fd_ulong_min( ic_correction, cu )
    1124             : 
    1125          78 : sigtext:     err = FD_VM_ERR_EBPF_EXECUTION_OVERRUN;                                     FD_VM_INTERP_FAULT;                    goto interp_halt;
    1126          42 : sigtextbr:   err = FD_VM_ERR_EBPF_CALL_OUTSIDE_TEXT_SEGMENT;                             /* ic current */     /* cu current */  goto interp_halt;
    1127           0 : sigstack:    err = FD_VM_ERR_EBPF_CALL_DEPTH_EXCEEDED;                                   /* ic current */     /* cu current */  goto interp_halt;
    1128        1176 : sigill:      err = FD_VM_ERR_EBPF_UNSUPPORTED_INSTRUCTION;                               FD_VM_INTERP_FAULT;                    goto interp_halt;
    1129           6 : sigillbr:    err = FD_VM_ERR_EBPF_UNSUPPORTED_INSTRUCTION;                               /* ic current */     /* cu current */  goto interp_halt;
    1130          18 : siginv:      err = FD_VM_ERR_EBPF_INVALID_INSTRUCTION;                                   /* ic current */     /* cu current */  goto interp_halt;
    1131         198 : sigsegv:     err = fd_vm_generate_access_violation( vm->segv_vaddr, vm->sbpf_version );  FD_VM_INTERP_FAULT;                    goto interp_halt;
    1132         681 : sigcost:     err = FD_VM_ERR_EBPF_EXCEEDED_MAX_INSTRUCTIONS;                             /* ic current */     cu = 0UL;         goto interp_halt;
    1133           0 : sigsyscall:  err = FD_VM_ERR_EBPF_SYSCALL_ERROR;                                         /* ic current */     /* cu current */  goto interp_halt;
    1134         138 : sigfpe:      err = FD_VM_ERR_EBPF_DIVIDE_BY_ZERO;                                        FD_VM_INTERP_FAULT;                    goto interp_halt;
    1135          36 : sigfpeof:    err = FD_VM_ERR_EBPF_DIVIDE_OVERFLOW;                                       FD_VM_INTERP_FAULT;                    goto interp_halt;
    1136        5844 : sigexit:     /* err current */                                                           /* ic current */     /* cu current */  goto interp_halt;
    1137             : 
    1138           0 : #undef FD_VM_INTERP_FAULT
    1139             : 
    1140        8217 : interp_halt:
    1141             : 
    1142             :   /* Pack the unpacked execution state into vm to give a precise view of
    1143             :      the execution when the vm halted. */
    1144             : 
    1145        8217 :   vm->pc        = pc;
    1146        8217 :   vm->ic        = ic;
    1147        8217 :   vm->cu        = cu;
    1148        8217 :   vm->frame_cnt = frame_cnt;
    1149             : 
    1150        8217 : # undef FD_VM_INTERP_STACK_PUSH
    1151             : 
    1152        8217 : # undef FD_VM_INTERP_BRANCH_END
    1153        8217 : # undef FD_VM_INTERP_BRANCH_BEGIN
    1154             : 
    1155        8217 : # undef FD_VM_INTERP_INSTR_END
    1156        8217 : # undef FD_VM_INTERP_INSTR_BEGIN
    1157        8217 : # undef FD_VM_INTERP_INSTR_EXEC
    1158             : 
    1159        8217 : # if defined(__clang__)
    1160        8217 : # pragma clang diagnostic pop
    1161        8217 : # endif
    1162             : 
    1163        8217 : # if defined(__GNUC__)
    1164        8217 : # pragma GCC diagnostic pop
    1165        8217 : # endif
    1166             : 
    1167             : /*   Agave/JIT CU model analysis (and why we are conformant!):
    1168             : 
    1169             :      The Agave JIT employs a similar strategy of accumulating instructions
    1170             :      in a linear run and processing them at the start of a new linear
    1171             :      run/branch (side note: the JIT treats the LDQ instruction as a "branch"
    1172             :      that jumps pc + 2).
    1173             : 
    1174             :      In what is assumed to be an act of register conservation, the JIT
    1175             :      uses a catch-all "instruction meter" (IM) register (REGISTER_INSTRUCTION_METER)
    1176             :      that represents two different interpretations of the question
    1177             :      "how many instructions can I execute?".
    1178             : 
    1179             :      The IM, depending on where we are in the execution, either represents:
    1180             :         1. IM => The number of instructions remaining before exhausting CU
    1181             :         budget. This is analagous to vm->cu in our interpreter.
    1182             :         2. IM' => The last pc you can execute in the current linear run before
    1183             :         exhausting CU budget.  Mathematically, IM' = IM + pc0
    1184             :         where pc0, just like our definition, is the start of the linear run.
    1185             : 
    1186             :         Note: IM' can go past the actual basic block/segment. In-fact,
    1187             :         it typically does, and implies we can execute the full block without
    1188             :         exhausting CU budget (reminder that LDQ is treated as a branch).
    1189             : 
    1190             :       By default, the IM' form is used during execution. The IM form is used:
    1191             :         - (transiently) during the processing of a branch instruction
    1192             :         - in post-VM cleanup (updates EbpfVm::previous_instruction_meter).
    1193             : 
    1194             :       When a branch instruction is encountered, the JIT checks
    1195             :       for CU exhaustion with pc > IM', and throws an exception if so. This is valid,
    1196             :       because as described above, IM' is the largest PC you can reach.
    1197             : 
    1198             :       If we haven't exhausted our CU limit, it updates IM':
    1199             :         1. IM = IM' - (pc + 1)  # Note that IM' at this point is IM + pc0',
    1200             :                                 # where pc0' is the start of the current linear run.
    1201             :         2. IM' = IM + pc0       # pc0 is the start of the new linear run (typically the target pc)
    1202             : 
    1203             :       Code (that does the above in one ALU instruction):
    1204             :        https://github.com/solana-labs/rbpf/blob/v0.8.5/src/jit.rs#L891
    1205             : 
    1206             : 
    1207             :       ### How does this relate to our interpreter?
    1208             : 
    1209             :       This process is similar to FD_VM_INTERP_BRANCH_BEGIN.
    1210             :       We just deal with the IM form throughout (with vm->cu and ic_correction).
    1211             :       If we break down step 1 from above with what we know about IM and IM',
    1212             :       we get the following:
    1213             :         1. IM = IM' - (pc + 1)
    1214             :            IM = (IM + pc0') - (pc + 1)
    1215             :            IM = IM + (pc0' - (pc + 1))
    1216             :            IM = IM - ((pc + 1) - pc0')
    1217             :            IM = IM - ic_correction
    1218             :       Here, ((pc + 1) - pc0') is the number of instrutions executed in the current
    1219             :       linear run. This is the same as our ic_correction(*) in FD_VM_INTERP_BRANCH_BEGIN.
    1220             : 
    1221             :       If we replace IM with cu, this effectively becomes the
    1222             :            cu -= ic_correction
    1223             :       line in FD_VM_INTERP_BRANCH_BEGIN.
    1224             : 
    1225             :       (*) Note: ic_correction (also) takes two forms. It is either the instruction
    1226             :       accumulator or the number of instructions executed in the current linear run.
    1227             :       It (transiently) takes the latter form during FD_VM_INTERP_BRANCH_BEGIN and
    1228             :       FD_VM_INTERP_FAULT, and the former form otherwise.
    1229             : */
    1230             : 
    1231             : /* (WIP) Precise faulting and the Agave JIT:
    1232             : 
    1233             :    Since the cost model is a part of consensus, we need to conform with the Agave/JIT
    1234             :    cost model 1:1. To achieve that, our faulting model also needs to match precisely. This
    1235             :    section covers the various faults that the respective VMs implement and how they match.
    1236             : 
    1237             :    # Normal VM exit (sigexit):
    1238             :    VM exit instruction entrypoint: https://github.com/solana-labs/rbpf/blob/12237895305ab38514be865ebed6268553e4f589/src/jit.rs#L698-L708
    1239             : 
    1240             :    Pseudocode (with FD semantics):
    1241             :    ```
    1242             :     # pc is at the exit instruction
    1243             :     # pc0 is the start of the current linear run
    1244             :     if (frame_cnt == 0) {
    1245             :         goto sigexit;
    1246             :     }
    1247             :     ...
    1248             : 
    1249             :     sigexit:
    1250             :     if IM' <= pc {
    1251             :       goto sigcost;
    1252             :     } else {
    1253             :       goto interp_halt;
    1254             :     }
    1255             :     ```
    1256             : 
    1257             :     Breaking down the IM' < pc check:
    1258             :     - IM' = IM + pc0
    1259             :     - pc  = ic + pc0, where (ic + 1) is the number of instructions executed in the current linear run
    1260             : 
    1261             :     IM' <= pc
    1262             :     IM + pc0 <= ic + pc0
    1263             :     IM <= ic
    1264             :     IM <= pc - pc0
    1265             :     IM < pc - pc0 + 1 # all unsigned integers
    1266             :     IM < ic_correction
    1267             : 
    1268             :     This is analagous to the ic_correction>cu check in VM_INTERP_BRANCH_BEGIN.
    1269             : 
    1270             :    # (TODO) Text Overrun (sigtext/sigsplit):
    1271             : 
    1272             : */

Generated by: LCOV version 1.14