LCOV - code coverage report
Current view: top level - flamenco/vm - fd_vm_interp_core.c (source / functions) Hit Total Coverage
Test: cov.lcov Lines: 621 708 87.7 %
Date: 2025-12-13 04:39:40 Functions: 0 0 -

          Line data    Source code
       1             :   /* This is the VM SBPF interpreter core.  The caller unpacks the VM
       2             :      state and then just lets execution continue into this (or jumps to
       3             :      interp_exec) to start running.  The VM will run until it halts or
       4             :      faults.  On normal termination, it will branch to interp_halt to
       5             :      exit.  Each fault has its own exit label to allow the caller to
       6             :      handle individually. */
       7             : 
       8             :   /* FIXME: SIGILLS FOR VARIOUS THINGS THAT HAVE UNNECESSARY BITS IN IMM
       9             :      SET? (LIKE WIDE SHIFTS?) */
      10             : 
      11           0 : # if defined(__GNUC__) /* -Wpedantic rejects labels as values and rejects goto *expr */
      12           0 : # pragma GCC diagnostic push
      13           0 : # pragma GCC diagnostic ignored "-Wpedantic"
      14           0 : # endif
      15             : 
      16           0 : # if defined(__clang__) /* Clang is differently picky about labels as values and goto *expr */
      17           0 : # pragma clang diagnostic push
      18           0 : # pragma clang diagnostic ignored "-Wpedantic"
      19           0 : # pragma clang diagnostic ignored "-Wgnu-label-as-value"
      20           0 : # endif
      21             : 
      22             :   /* Include the jump table */
      23             : 
      24        7779 : # include "fd_vm_interp_jump_table.c"
      25             : 
      26             :   /* Update the jump table based on SBPF version */
      27             : 
      28           0 :   ulong sbpf_version = vm->sbpf_version;
      29             : 
      30             :   /* Unpack the VM state */
      31             : 
      32           0 :   ulong pc        = vm->pc;
      33           0 :   ulong ic        = vm->ic;
      34           0 :   ulong cu        = vm->cu;
      35           0 :   ulong frame_cnt = vm->frame_cnt;
      36             : 
      37           0 :   void const * const * const version_interp_jump_table = interp_jump_table[ sbpf_version ];
      38             : 
      39             :   /* FD_VM_INTERP_INSTR_EXEC loads the first word of the instruction at
      40             :      pc, parses it, fetches the associated register values and then
      41             :      jumps to the code that executes the instruction.  On normal
      42             :      instruction execution, the pc will be updated and
      43             :      FD_VM_INTERP_INSTR_EXEC will be invoked again to do the next
      44             :      instruction.  After a normal halt, this will branch to interp_halt.
      45             :      Otherwise, it will branch to the appropriate normal termination. */
      46             : 
      47           0 :   ulong instr;
      48           0 :   ulong opcode;
      49           0 :   ulong dst;
      50           0 :   ulong src;
      51           0 :   ulong offset; /* offset is 16-bit but always sign extended, so we handle cast once */
      52           0 :   uint  imm;
      53           0 :   ulong reg_dst;
      54           0 :   ulong reg_src;
      55             : 
      56             : /* These mimic the exact Rust semantics for wrapping_shl and wrapping_shr. */
      57             : 
      58             : /* u64::wrapping_shl: a.unchecked_shl(b & (64 - 1))
      59             : 
      60             :    https://doc.rust-lang.org/std/primitive.u64.html#method.wrapping_shl
      61             :  */
      62         459 : #define FD_RUST_ULONG_WRAPPING_SHL( a, b ) (a << ( b & ( 63 ) ))
      63             : 
      64             : /* u64::wrapping_shr: a.unchecked_shr(b & (64 - 1))
      65             : 
      66             :    https://doc.rust-lang.org/std/primitive.u64.html#method.wrapping_shr
      67             :  */
      68          21 : #define FD_RUST_ULONG_WRAPPING_SHR( a, b ) (a >> ( b & ( 63 ) ))
      69             : 
      70             : /* u32::wrapping_shl: a.unchecked_shl(b & (32 - 1))
      71             : 
      72             :    https://doc.rust-lang.org/std/primitive.u32.html#method.wrapping_shl
      73             :  */
      74         900 : #define FD_RUST_UINT_WRAPPING_SHL( a, b ) (a << ( b & ( 31 ) ))
      75             : 
      76             : /* u32::wrapping_shr: a.unchecked_shr(b & (32 - 1))
      77             : 
      78             :    https://doc.rust-lang.org/std/primitive.u32.html#method.wrapping_shr
      79             :  */
      80          18 : #define FD_RUST_UINT_WRAPPING_SHR( a, b ) (a >> ( b & ( 31 ) ))
      81             : 
      82             : 
      83           0 : # define FD_VM_INTERP_INSTR_EXEC                                                                 \
      84      381945 :   if( FD_UNLIKELY( pc>=text_cnt ) ) goto sigtext; /* Note: untaken branches don't consume BTB */ \
      85      381945 :   instr   = text[ pc ];                  /* Guaranteed in-bounds */                              \
      86      381843 :   opcode  = fd_vm_instr_opcode( instr ); /* in [0,256) even if malformed */                      \
      87      381843 :   dst     = fd_vm_instr_dst   ( instr ); /* in [0, 16) even if malformed */                      \
      88      381843 :   src     = fd_vm_instr_src   ( instr ); /* in [0, 16) even if malformed */                      \
      89      381843 :   offset  = fd_vm_instr_offset( instr ); /* in [-2^15,2^15) even if malformed */                 \
      90      381843 :   imm     = fd_vm_instr_imm   ( instr ); /* in [0,2^32) even if malformed */                     \
      91      381843 :   reg_dst = reg[ dst ];                  /* Guaranteed in-bounds */                              \
      92      381843 :   reg_src = reg[ src ];                  /* Guaranteed in-bounds */                              \
      93      381843 :   goto *version_interp_jump_table[ opcode ]      /* Guaranteed in-bounds */
      94             : 
      95             : /* FD_VM_INTERP_SYSCALL_EXEC
      96             :    (macro to handle the logic of 0x85 pre- and post- SIMD-0178: static syscalls)
      97             : 
      98             :    Setup.
      99             :    Update the vm with the current vm execution state for the
     100             :    syscall.  Note that BRANCH_BEGIN has pc at the syscall and
     101             :    already updated ic and cu to reflect all instructions up to
     102             :    and including the syscall instruction itself.
     103             : 
     104             :    Execution.
     105             :    Do the syscall.  We use ret reduce the risk of the syscall
     106             :    accidentally modifying other registers (note however since a
     107             :    syscall has the vm handle it still do arbitrary modifications
     108             :    to the vm state) and the risk of a pointer escape on reg from
     109             :    inhibiting compiler optimizations (this risk is likely low in
     110             :    as this is the only point in the whole interpreter core that
     111             :    calls outside this translation unit).
     112             :    At this point, vm->cu is positive.
     113             : 
     114             :    Error handling.
     115             :    If we trust syscall implementations to handle the vm state
     116             :    correctly, the below could be implemented as unpacking the vm
     117             :    state and jumping to sigsys on error.  But we provide some
     118             :    extra protection to make various strong guarantees:
     119             : 
     120             :    - We do not let the syscall modify pc currently as nothing
     121             :      requires this and it reduces risk of a syscall bug mucking
     122             :      up the interpreter.  If there ever was a syscall that
     123             :      needed to modify the pc (e.g. a syscall that has execution
     124             :      resume from a different location than the instruction
     125             :      following the syscall), do "pc = vm->pc" below.
     126             : 
     127             :    - We do not let the syscall modify ic currently as nothing
     128             :      requires this and it keeps the ic precise.  If a future
     129             :      syscall needs this, do "ic = vm->ic" below.
     130             : 
     131             :    - We do not let the syscall increase cu as nothing requires
     132             :      this and it guarantees the interpreter will halt in a
     133             :      reasonable finite amount of time.  If a future syscall
     134             :      needs this, do "cu = vm->cu" below.
     135             : 
     136             :    - A syscall that returns SIGCOST is always treated as though
     137             :      it also zerod cu.
     138             : 
     139             :    At this point, vm->cu is whatever the syscall tried to set
     140             :    and cu is positive.
     141             : 
     142             :    Exit
     143             :    At this point, cu is positive and err is clear.
     144             : */
     145             : 
     146           0 : # if FD_HAS_FLATCC
     147           0 : # define FD_VM_INTERP_SYSCALL_EXEC_DUMP                                       \
     148             :   /* Dumping for debugging purposes */                                        \
     149           3 :   if( FD_UNLIKELY( vm->dump_syscall_to_pb ) ) {                               \
     150           0 :     fd_dump_vm_syscall_to_protobuf( vm, syscall->name );                      \
     151           0 :   }
     152             : # else
     153             : # define FD_VM_INTERP_SYSCALL_EXEC_DUMP
     154             : # endif
     155           0 : # define FD_VM_INTERP_SYSCALL_EXEC                                            \
     156             :   /* Setup */                                                                 \
     157           3 :   vm->pc        = pc;                                                         \
     158           3 :   vm->ic        = ic;                                                         \
     159           3 :   vm->cu        = cu;                                                         \
     160           3 :   vm->frame_cnt = frame_cnt;                                                  \
     161           3 :   FD_VM_INTERP_SYSCALL_EXEC_DUMP                                              \
     162             :   /* Execution */                                                             \
     163           3 :   ulong ret[1];                                                               \
     164           3 :   err = syscall->func( vm, reg[1], reg[2], reg[3], reg[4], reg[5], ret );     \
     165           3 :   reg[0] = ret[0];                                                            \
     166             :   /* Error handling */                                                        \
     167           3 :   ulong cu_req = vm->cu;                                                      \
     168           3 :   cu = fd_ulong_min( cu_req, cu );                                            \
     169           3 :   if( FD_UNLIKELY( err ) ) {                                                  \
     170           0 :     if( err==FD_VM_SYSCALL_ERR_COMPUTE_BUDGET_EXCEEDED ) cu = 0UL; /* cmov */ \
     171           0 :     FD_VM_TEST_ERR_EXISTS( vm );                                              \
     172           0 :     goto sigsyscall;                                                          \
     173           0 :   }                                                                           \
     174             :   /* Exit */
     175             : 
     176             : 
     177             :   /* FD_VM_INTERP_INSTR_BEGIN / FD_VM_INTERP_INSTR_END bracket opcode's
     178             :      implementation for an opcode that does not branch.  On entry, the
     179             :      instruction word has been unpacked into dst / src / offset / imm
     180             :      and reg[dst] / reg[src] has been prefetched into reg_dst / reg_src. */
     181             : 
     182      245271 : # define FD_VM_INTERP_INSTR_BEGIN(opcode) interp_##opcode:
     183             : 
     184             : # ifndef FD_VM_INTERP_EXE_TRACING_ENABLED /* Non-tracing path only, ~0.3% faster in some benchmarks, slower in others but more code footprint */
     185      244899 : # define FD_VM_INTERP_INSTR_END pc++; FD_VM_INTERP_INSTR_EXEC
     186             : # else /* Use this version when tracing or optimizing code footprint */
     187           0 : # define FD_VM_INTERP_INSTR_END pc++; goto interp_exec
     188             : # endif
     189             : 
     190             :   /* Instead of doing a lot of compute budget calcs and tests every
     191             :      instruction, we note that the program counter increases
     192             :      monotonically after a branch (or a program start) until the next
     193             :      branch (or program termination).  We save the program counter of
     194             :      the start of such a segment in pc0.  Whenever we encounter a branch
     195             :      (or a program termination) at pc, we know we processed pc-pc0+1
     196             :      text words (including the text word for the branch instruction
     197             :      itself as all branch instructions are single word).
     198             : 
     199             :      Each instruction costs 1 cu (syscalls can cost extra on top of
     200             :      this that is accounted separately in CALL_IMM below).  Since there
     201             :      could have been multiword instructions in this segment, at start of
     202             :      such a segment, we zero out the accumulator ic_correction and have
     203             :      every multiword instruction in the segment accumulate the number of
     204             :      extra text words it has to this variable.  (Sigh ... it would be a
     205             :      lot simpler to bill based on text words processed but this would be
     206             :      very difficult to make this protocol change at this point.)
     207             : 
     208             :      When we encounter a branch at pc, the number of instructions
     209             :      processed (and thus the number of compute units to bill for that
     210             :      segment) is thus:
     211             : 
     212             :        pc - pc0 + 1 - ic_correction
     213             : 
     214             :      IMPORTANT SAFETY TIP!  This implies the worst case interval before
     215             :      checking the cu budget is the worst case text_cnt.  But since all
     216             :      such instructions are cheap 1 cu instructions and processed fast
     217             :      and text max is limited in size, this should be acceptable in
     218             :      practice.  FIXME: DOUBLE CHECK THE MATH ABOVE AGAINST PROTOCOL
     219             :      LIMITS. */
     220             : 
     221           0 :   ulong pc0           = pc;
     222           0 :   ulong ic_correction = 0UL;
     223             : 
     224           0 : # define FD_VM_INTERP_BRANCH_BEGIN(opcode)                                                              \
     225      135396 :   interp_##opcode:                                                                                      \
     226             :     /* Bill linear text segment and this branch instruction as per the above */                         \
     227      135396 :     ic_correction = pc - pc0 + 1UL - ic_correction;                                                     \
     228      135396 :     ic += ic_correction;                                                                                \
     229      135396 :     if( FD_UNLIKELY( ic_correction>cu ) ) goto sigcost; /* Note: untaken branches don't consume BTB */  \
     230      135396 :     cu -= ic_correction;                                                                                \
     231             :     /* At this point, cu>=0 */                                                                          \
     232      134715 :     ic_correction = 0UL;
     233             : 
     234             :   /* FIXME: debatable if it is better to do pc++ here or have the
     235             :      instruction implementations do it in their code path. */
     236             : 
     237             : # ifndef FD_VM_INTERP_EXE_TRACING_ENABLED /* Non-tracing path only, ~4% faster in some benchmarks, slower in others but more code footprint */
     238             : # define FD_VM_INTERP_BRANCH_END               \
     239      129261 :     pc++;                                      \
     240      129261 :     pc0 = pc; /* Start a new linear segment */ \
     241      129267 :     FD_VM_INTERP_INSTR_EXEC
     242             : # else /* Use this version when tracing or optimizing code footprint */
     243             : # define FD_VM_INTERP_BRANCH_END               \
     244           0 :     pc++;                                      \
     245           0 :     pc0 = pc; /* Start a new linear segment */ \
     246             :     /* FIXME: TEST sigsplit HERE */            \
     247           0 :     goto interp_exec
     248             : # endif
     249             : 
     250             :   /* FD_VM_INTERP_STACK_PUSH pushes reg[6:9] onto the shadow stack and
     251             :      advances reg[10] to a new user stack frame.  If there are no more
     252             :      stack frames available, will do a SIGSTACK. */
     253             : 
     254             :   /* FIXME: double check faulting is desired on stack overflow. */
     255             : 
     256             :   /* FIXME: a pre-belt-sanding FIXME implied the TLB should be updated
     257             :      to prevent byte code from accessing the stack outside its current
     258             :      stack frame.  But this would break the common practice of a
     259             :      function passing a pointer to something on its stack into a
     260             :      function that it calls:
     261             : 
     262             :        void foo( ... ) {
     263             :          ...
     264             :          int ret;
     265             :          bar( &ret );
     266             :          ...
     267             :        }
     268             : 
     269             :      So this probably shouldn't be done.  But, if it is in fact
     270             :      necessary, the TLB updates would be here and in pop. */
     271             : 
     272             :   /* FIXME: unvalidated code mucking with r10 */
     273             : 
     274           0 : # define FD_VM_INTERP_STACK_PUSH                                                                             \
     275          42 :   shadow[ frame_cnt ].r6  = reg[6];                                                                          \
     276          42 :   shadow[ frame_cnt ].r7  = reg[7];                                                                          \
     277          42 :   shadow[ frame_cnt ].r8  = reg[8];                                                                          \
     278          42 :   shadow[ frame_cnt ].r9  = reg[9];                                                                          \
     279          42 :   shadow[ frame_cnt ].r10 = reg[10];                                                                         \
     280          42 :   shadow[ frame_cnt ].pc  = pc;                                                                              \
     281          42 :   if( FD_UNLIKELY( ++frame_cnt>=frame_max ) ) goto sigstack; /* Note: untaken branches don't consume BTB */  \
     282          42 :   if( !fd_sbpf_dynamic_stack_frames_enabled( sbpf_version ) ) reg[10] += FD_VM_STACK_FRAME_SZ * 2UL;         \
     283           0 : 
     284             :   /* We subtract the heap cost in the BPF loader */
     285             : 
     286           0 :   goto interp_exec; /* Silly but to avoid unused label warning in some configurations */
     287        7779 : interp_exec:
     288             : 
     289             : # ifdef FD_VM_INTERP_EXE_TRACING_ENABLED
     290             :   /* Note: when tracing or optimizing for code footprint, all
     291             :      instruction execution starts here such that this is only point
     292             :      where exe tracing diagnostics are needed. */
     293           0 :   if( FD_UNLIKELY( pc>=text_cnt ) ) goto sigtext;
     294           0 :   fd_vm_trace_event_exe( vm->trace, pc, ic + ( pc - pc0 - ic_correction ), cu, reg, vm->text + pc, vm->text_cnt - pc, ic_correction, frame_cnt );
     295           0 : # endif
     296             : 
     297        7779 :   FD_VM_INTERP_INSTR_EXEC;
     298             : 
     299             :   /* 0x00 - 0x0f ******************************************************/
     300             : 
     301        7779 :   FD_VM_INTERP_INSTR_BEGIN(0x04) /* FD_SBPF_OP_ADD_IMM */
     302          36 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst + (int)imm );
     303          36 :   FD_VM_INTERP_INSTR_END;
     304             : 
     305          45 :   FD_VM_INTERP_INSTR_BEGIN(0x04depr) /* FD_SBPF_OP_ADD_IMM deprecated SIMD-0174 */
     306          45 :     reg[ dst ] = (ulong)(long)( (int)reg_dst + (int)imm );
     307          45 :   FD_VM_INTERP_INSTR_END;
     308             : 
     309         639 :   FD_VM_INTERP_BRANCH_BEGIN(0x05) /* FD_SBPF_OP_JA */
     310         633 :     pc += offset;
     311         633 :   FD_VM_INTERP_BRANCH_END;
     312             : 
     313       30108 :   FD_VM_INTERP_INSTR_BEGIN(0x07) /* FD_SBPF_OP_ADD64_IMM */
     314       30108 :     reg[ dst ] = reg_dst + (ulong)(long)(int)imm;
     315       30108 :   FD_VM_INTERP_INSTR_END;
     316             : 
     317          33 :   FD_VM_INTERP_INSTR_BEGIN(0x0c) /* FD_SBPF_OP_ADD_REG */
     318          33 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst + (int)reg_src );
     319          33 :   FD_VM_INTERP_INSTR_END;
     320             : 
     321          39 :   FD_VM_INTERP_INSTR_BEGIN(0x0cdepr) /* FD_SBPF_OP_ADD_REG deprecated SIMD-0174 */
     322          39 :     reg[ dst ] = (ulong)(long)( (int)reg_dst + (int)reg_src );
     323          39 :   FD_VM_INTERP_INSTR_END;
     324             : 
     325          78 :   FD_VM_INTERP_INSTR_BEGIN(0x0f) /* FD_SBPF_OP_ADD64_REG */
     326          78 :     reg[ dst ] = reg_dst + reg_src;
     327          78 :   FD_VM_INTERP_INSTR_END;
     328             : 
     329             :   /* 0x10 - 0x1f ******************************************************/
     330             : 
     331          36 :   FD_VM_INTERP_INSTR_BEGIN(0x14) /* FD_SBPF_OP_SUB_IMM */
     332          36 :     reg[ dst ] = (ulong)(uint)( (int)imm - (int)reg_dst );
     333          36 :   FD_VM_INTERP_INSTR_END;
     334             : 
     335          39 :   FD_VM_INTERP_INSTR_BEGIN(0x14depr) /* FD_SBPF_OP_SUB_IMM deprecated SIMD-0174 */
     336          39 :     reg[ dst ] = (ulong)(long)( (int)reg_dst - (int)imm );
     337          39 :   FD_VM_INTERP_INSTR_END;
     338             : 
     339        1254 :   FD_VM_INTERP_BRANCH_BEGIN(0x15) /* FD_SBPF_OP_JEQ_IMM */
     340        1242 :     pc += fd_ulong_if( reg_dst==(ulong)(long)(int)imm, offset, 0UL );
     341        1242 :   FD_VM_INTERP_BRANCH_END;
     342             : 
     343          33 :   FD_VM_INTERP_INSTR_BEGIN(0x17) /* FD_SBPF_OP_SUB64_IMM */
     344          33 :     reg[ dst ] = (ulong)(long)(int)imm - reg_dst;
     345          33 :   FD_VM_INTERP_INSTR_END;
     346             : 
     347          36 :   FD_VM_INTERP_INSTR_BEGIN(0x17depr) /* FD_SBPF_OP_SUB64_IMM deprecated SIMD-0174 */
     348          36 :     reg[ dst ] = reg_dst - (ulong)(long)(int)imm;
     349          36 :   FD_VM_INTERP_INSTR_END;
     350             : 
     351         117 :   FD_VM_INTERP_INSTR_BEGIN(0x18) /* FD_SBPF_OP_LDQ */
     352         117 :     pc++;
     353         117 :     ic_correction++;
     354             :     /* No need to check pc because it's already checked during validation.
     355             :        if( FD_UNLIKELY( pc>=text_cnt ) ) goto sigsplit; // Note: untaken branches don't consume BTB */
     356         117 :     reg[ dst ] = (ulong)((ulong)imm | ((ulong)fd_vm_instr_imm( text[ pc ] ) << 32));
     357         117 :   FD_VM_INTERP_INSTR_END;
     358             : 
     359          36 :   FD_VM_INTERP_INSTR_BEGIN(0x1c) /* FD_SBPF_OP_SUB_REG */
     360          36 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst - (int)reg_src );
     361          36 :   FD_VM_INTERP_INSTR_END;
     362             : 
     363          39 :   FD_VM_INTERP_INSTR_BEGIN(0x1cdepr) /* FD_SBPF_OP_SUB_REG deprecated SIMD-0174 */
     364          39 :     reg[ dst ] = (ulong)(long)( (int)reg_dst - (int)reg_src );
     365          39 :   FD_VM_INTERP_INSTR_END;
     366             : 
     367         648 :   FD_VM_INTERP_BRANCH_BEGIN(0x1d) /* FD_SBPF_OP_JEQ_REG */
     368         642 :     pc += fd_ulong_if( reg_dst==reg_src, offset, 0UL );
     369         642 :   FD_VM_INTERP_BRANCH_END;
     370             : 
     371       30093 :   FD_VM_INTERP_INSTR_BEGIN(0x1f) /* FD_SBPF_OP_SUB64_REG */
     372       30093 :     reg[ dst ] = reg_dst - reg_src;
     373       30093 :   FD_VM_INTERP_INSTR_END;
     374             : 
     375             :   /* 0x20 - 0x2f ******************************************************/
     376             : 
     377          42 :   FD_VM_INTERP_INSTR_BEGIN(0x24) /* FD_SBPF_OP_MUL_IMM */
     378          42 :     reg[ dst ] = (ulong)(long)( (int)reg_dst * (int)imm );
     379          42 :   FD_VM_INTERP_INSTR_END;
     380             : 
     381        3126 :   FD_VM_INTERP_BRANCH_BEGIN(0x25) /* FD_SBPF_OP_JGT_IMM */
     382        3096 :     pc += fd_ulong_if( reg_dst>(ulong)(long)(int)imm, offset, 0UL );
     383        3096 :   FD_VM_INTERP_BRANCH_END;
     384             : 
     385           9 :   FD_VM_INTERP_INSTR_BEGIN(0x27) { /* FD_SBPF_OP_STB */
     386           9 :     ulong vaddr = reg_dst + offset;
     387           9 :     ulong haddr = fd_vm_mem_haddr( vm, vaddr, sizeof(uchar), region_haddr, region_st_sz, 1, 0UL );
     388           9 :     if( FD_UNLIKELY( !haddr ) ) {
     389           6 :       vm->segv_vaddr       = vaddr;
     390           6 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_ST;
     391           6 :       vm->segv_access_len  = 1UL;
     392           6 :       goto sigsegv;
     393           6 :     } /* Note: untaken branches don't consume BTB */
     394           3 :     fd_vm_mem_st_1( haddr, (uchar)imm );
     395           3 :   }
     396           3 :   FD_VM_INTERP_INSTR_END;
     397             : 
     398          78 :   FD_VM_INTERP_INSTR_BEGIN(0x2c) { /* FD_SBPF_OP_LDXB */
     399          78 :     ulong vaddr = reg_src + offset;
     400          78 :     ulong haddr = fd_vm_mem_haddr( vm, vaddr, sizeof(uchar), region_haddr, region_ld_sz, 0, 0UL );
     401          78 :     if( FD_UNLIKELY( !haddr ) ) {
     402          24 :       vm->segv_vaddr       = vaddr;
     403          24 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_LD;
     404          24 :       vm->segv_access_len  = 1UL;
     405          24 :       goto sigsegv;
     406          24 :     } /* Note: untaken branches don't consume BTB */
     407          54 :     reg[ dst ] = fd_vm_mem_ld_1( haddr );
     408          54 :   }
     409          54 :   FD_VM_INTERP_INSTR_END;
     410             : 
     411        3117 :   FD_VM_INTERP_BRANCH_BEGIN(0x2d) /* FD_SBPF_OP_JGT_REG */
     412        3087 :     pc += fd_ulong_if( reg_dst>reg_src, offset, 0UL );
     413        3087 :   FD_VM_INTERP_BRANCH_END;
     414             : 
     415           9 :   FD_VM_INTERP_INSTR_BEGIN(0x2f) { /* FD_SBPF_OP_STXB */
     416           9 :     ulong vaddr = reg_dst + offset;
     417           9 :     ulong haddr = fd_vm_mem_haddr( vm, vaddr, sizeof(uchar), region_haddr, region_st_sz, 1, 0UL );
     418           9 :     if( FD_UNLIKELY( !haddr ) ) {
     419           6 :       vm->segv_vaddr       = vaddr;
     420           6 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_ST;
     421           6 :       vm->segv_access_len  = 1UL;
     422           6 :       goto sigsegv;
     423           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigrdonly */
     424           3 :     fd_vm_mem_st_1( haddr, (uchar)reg_src );
     425           3 :   }
     426           3 :   FD_VM_INTERP_INSTR_END;
     427             : 
     428          42 :   FD_VM_INTERP_INSTR_BEGIN(0x27depr) /* FD_SBPF_OP_MUL64_IMM */
     429          42 :     reg[ dst ] = (ulong)( (long)reg_dst * (long)(int)imm );
     430          42 :   FD_VM_INTERP_INSTR_END;
     431             : 
     432          39 :   FD_VM_INTERP_INSTR_BEGIN(0x2cdepr) /* FD_SBPF_OP_MUL_REG */
     433          39 :     reg[ dst ] = (ulong)(long)( (int)reg_dst * (int)reg_src );
     434          39 :   FD_VM_INTERP_INSTR_END;
     435             : 
     436       30078 :   FD_VM_INTERP_INSTR_BEGIN(0x2fdepr) /* FD_SBPF_OP_MUL64_REG */
     437       30078 :     reg[ dst ] = reg_dst * reg_src;
     438       30078 :   FD_VM_INTERP_INSTR_END;
     439             : 
     440             :   /* 0x30 - 0x3f ******************************************************/
     441             : 
     442          42 :   FD_VM_INTERP_INSTR_BEGIN(0x34) /* FD_SBPF_OP_DIV_IMM */
     443          42 :     /* FIXME: convert to a multiply at validation time (usually probably
     444          42 :        not worth it) */
     445          42 :     reg[ dst ] = (ulong)((uint)reg_dst / imm);
     446          42 :   FD_VM_INTERP_INSTR_END;
     447             : 
     448        6123 :   FD_VM_INTERP_BRANCH_BEGIN(0x35) /* FD_SBPF_OP_JGE_IMM */
     449        6063 :     pc += fd_ulong_if( reg_dst>=(ulong)(long)(int)imm, offset, 0UL );
     450        6063 :   FD_VM_INTERP_BRANCH_END;
     451             : 
     452           3 :   FD_VM_INTERP_INSTR_BEGIN(0x36) /* FD_SBPF_OP_UHMUL64_IMM */
     453           3 :     reg[ dst ] = (ulong)(( (uint128)reg_dst * (uint128)(ulong)imm ) >> 64 );
     454           3 :   FD_VM_INTERP_INSTR_END;
     455             : 
     456           9 :   FD_VM_INTERP_INSTR_BEGIN(0x37) { /* FD_SBPF_OP_STH */
     457           9 :     ulong vaddr   = reg_dst + offset;
     458           9 :     ulong haddr   = fd_vm_mem_haddr( vm, vaddr, sizeof(ushort), region_haddr, region_st_sz, 1, 0UL );
     459           9 :     int   sigsegv = !haddr;
     460           9 :     if( FD_UNLIKELY( sigsegv ) ) {
     461           6 :       vm->segv_vaddr       = vaddr;
     462           6 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_ST;
     463           6 :       vm->segv_access_len  = 2UL;
     464           6 :       goto sigsegv;
     465           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     466           3 :     fd_vm_mem_st_2( haddr, (ushort)imm );
     467           3 :   }
     468           3 :   FD_VM_INTERP_INSTR_END;
     469             : 
     470          96 :   FD_VM_INTERP_INSTR_BEGIN(0x3c) { /* FD_SBPF_OP_LDXH */
     471          96 :     ulong vaddr   = reg_src + offset;
     472          96 :     ulong haddr   = fd_vm_mem_haddr( vm, vaddr, sizeof(ushort), region_haddr, region_ld_sz, 0, 0UL );
     473          96 :     int   sigsegv = !haddr;
     474          96 :     if( FD_UNLIKELY( sigsegv ) ) {
     475          36 :       vm->segv_vaddr       = vaddr;
     476          36 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_LD;
     477          36 :       vm->segv_access_len  = 2UL;
     478          36 :       goto sigsegv; /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     479          36 :     }
     480          60 :     reg[ dst ] = fd_vm_mem_ld_2( haddr );
     481          60 :   }
     482          60 :   FD_VM_INTERP_INSTR_END;
     483             : 
     484       35532 :   FD_VM_INTERP_BRANCH_BEGIN(0x3d) /* FD_SBPF_OP_JGE_REG */
     485       35478 :     pc += fd_ulong_if( reg_dst>=reg_src, offset, 0UL );
     486       35478 :   FD_VM_INTERP_BRANCH_END;
     487             : 
     488           9 :   FD_VM_INTERP_INSTR_BEGIN(0x3f) { /* FD_SBPF_OP_STXH */
     489           9 :     ulong vaddr   = reg_dst + offset;
     490           9 :     ulong haddr   = fd_vm_mem_haddr( vm, vaddr, sizeof(ushort), region_haddr, region_st_sz, 1, 0UL );
     491           9 :     int   sigsegv = !haddr;
     492           9 :     if( FD_UNLIKELY( sigsegv ) ) {
     493           6 :       vm->segv_vaddr       = vaddr;
     494           6 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_ST;
     495           6 :       vm->segv_access_len  = 2UL;
     496           6 :       goto sigsegv;
     497           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     498           3 :     fd_vm_mem_st_2( haddr, (ushort)reg_src );
     499           3 :   }
     500           3 :   FD_VM_INTERP_INSTR_END;
     501             : 
     502           3 :   FD_VM_INTERP_INSTR_BEGIN(0x3e) /* FD_SBPF_OP_UHMUL64_REG */
     503           3 :     reg[ dst ] = (ulong)(( (uint128)reg_dst * (uint128)reg_src ) >> 64 );
     504           3 :   FD_VM_INTERP_INSTR_END;
     505             : 
     506          45 :   FD_VM_INTERP_INSTR_BEGIN(0x37depr) /* FD_SBPF_OP_DIV64_IMM */
     507          45 :     reg[ dst ] = reg_dst / (ulong)(long)(int)imm;
     508          45 :   FD_VM_INTERP_INSTR_END;
     509             : 
     510          57 :   FD_VM_INTERP_INSTR_BEGIN(0x3cdepr) /* FD_SBPF_OP_DIV_REG */
     511          57 :     if( FD_UNLIKELY( !(uint)reg_src ) ) goto sigfpe;
     512          42 :     reg[ dst ] = (ulong)((uint)reg_dst / (uint)reg_src);
     513          42 :   FD_VM_INTERP_INSTR_END;
     514             : 
     515       30072 :   FD_VM_INTERP_INSTR_BEGIN(0x3fdepr) /* FD_SBPF_OP_DIV64_REG */
     516       30072 :     if( FD_UNLIKELY( !reg_src ) ) goto sigfpe;
     517       30060 :     reg[ dst ] = reg_dst / reg_src;
     518       30060 :   FD_VM_INTERP_INSTR_END;
     519             : 
     520             :   /* 0x40 - 0x4f ******************************************************/
     521             : 
     522          51 :   FD_VM_INTERP_INSTR_BEGIN(0x44) /* FD_SBPF_OP_OR_IMM */
     523          51 :     reg[ dst ] = (ulong)( (uint)reg_dst | imm );
     524          51 :   FD_VM_INTERP_INSTR_END;
     525             : 
     526        1266 :   FD_VM_INTERP_BRANCH_BEGIN(0x45) /* FD_SBPF_OP_JSET_IMM */
     527        1254 :     pc += fd_ulong_if( !!(reg_dst & (ulong)(long)(int)imm), offset, 0UL );
     528        1254 :   FD_VM_INTERP_BRANCH_END;
     529             : 
     530          39 :   FD_VM_INTERP_INSTR_BEGIN(0x46) /* FD_SBPF_OP_UDIV32_IMM */
     531          39 :     reg[ dst ] = (ulong)( (uint)reg_dst / (uint)imm );
     532          39 :   FD_VM_INTERP_INSTR_END;
     533             : 
     534          51 :   FD_VM_INTERP_INSTR_BEGIN(0x47) /* FD_SBPF_OP_OR64_IMM */
     535          51 :     reg[ dst ] = reg_dst | (ulong)(long)(int)imm;
     536          51 :   FD_VM_INTERP_INSTR_END;
     537             : 
     538          57 :   FD_VM_INTERP_INSTR_BEGIN(0x4c) /* FD_SBPF_OP_OR_REG */
     539          57 :     reg[ dst ] = (ulong)(uint)( reg_dst | reg_src );
     540          57 :   FD_VM_INTERP_INSTR_END;
     541             : 
     542         663 :   FD_VM_INTERP_BRANCH_BEGIN(0x4d) /* FD_SBPF_OP_JSET_REG */
     543         657 :     pc += fd_ulong_if( !!(reg_dst & reg_src), offset, 0UL );
     544         657 :   FD_VM_INTERP_BRANCH_END;
     545             : 
     546          48 :   FD_VM_INTERP_INSTR_BEGIN(0x4e) /* FD_SBPF_OP_UDIV32_REG */
     547          48 :     if( FD_UNLIKELY( !(uint)reg_src ) ) goto sigfpe;
     548          36 :     reg[ dst ] = (ulong)( (uint)reg_dst / (uint)reg_src );
     549          36 :   FD_VM_INTERP_INSTR_END;
     550             : 
     551          57 :   FD_VM_INTERP_INSTR_BEGIN(0x4f) /* FD_SBPF_OP_OR64_REG */
     552          57 :     reg[ dst ] = reg_dst | reg_src;
     553          57 :   FD_VM_INTERP_INSTR_END;
     554             : 
     555             :   /* 0x50 - 0x5f ******************************************************/
     556             : 
     557          54 :   FD_VM_INTERP_INSTR_BEGIN(0x54) /* FD_SBPF_OP_AND_IMM */
     558          54 :     reg[ dst ] = (ulong)( (uint)reg_dst & imm );
     559          54 :   FD_VM_INTERP_INSTR_END;
     560             : 
     561       30669 :   FD_VM_INTERP_BRANCH_BEGIN(0x55) /* FD_SBPF_OP_JNE_IMM */
     562       30663 :     pc += fd_ulong_if( reg_dst!=(ulong)(long)(int)imm, offset, 0UL );
     563       30663 :   FD_VM_INTERP_BRANCH_END;
     564             : 
     565          39 :   FD_VM_INTERP_INSTR_BEGIN(0x56) /* FD_SBPF_OP_UDIV64_IMM */
     566          39 :     reg[ dst ] = reg_dst / (ulong)imm;
     567          39 :   FD_VM_INTERP_INSTR_END;
     568             : 
     569          63 :   FD_VM_INTERP_INSTR_BEGIN(0x57) /* FD_SBPF_OP_AND64_IMM */
     570          63 :     reg[ dst ] = reg_dst & (ulong)(long)(int)imm;
     571          63 :   FD_VM_INTERP_INSTR_END;
     572             : 
     573          60 :   FD_VM_INTERP_INSTR_BEGIN(0x5c) /* FD_SBPF_OP_AND_REG */
     574          60 :     reg[ dst ] = (ulong)(uint)( reg_dst & reg_src );
     575          60 :   FD_VM_INTERP_INSTR_END;
     576             : 
     577         657 :   FD_VM_INTERP_BRANCH_BEGIN(0x5d) /* FD_SBPF_OP_JNE_REG */
     578         651 :     pc += fd_ulong_if( reg_dst!=reg_src, offset, 0UL );
     579         651 :   FD_VM_INTERP_BRANCH_END;
     580             : 
     581          45 :   FD_VM_INTERP_INSTR_BEGIN(0x5e) /* FD_SBPF_OP_UDIV64_REG */
     582          45 :     if( FD_UNLIKELY( !reg_src ) ) goto sigfpe;
     583          36 :     reg[ dst ] = reg_dst / reg_src;
     584          36 :   FD_VM_INTERP_INSTR_END;
     585             : 
     586          48 :   FD_VM_INTERP_INSTR_BEGIN(0x5f) /* FD_SBPF_OP_AND64_REG */
     587          48 :     reg[ dst ] = reg_dst & reg_src;
     588          48 :   FD_VM_INTERP_INSTR_END;
     589             : 
     590             :   /* 0x60 - 0x6f ******************************************************/
     591             : 
     592             :   /* FIXME: CHECK THE CU COST MODEL FOR THESE (IS IT LIKE
     593             :      FD_VM_CONSUME_MEM AND NOT JUST FIXED) */
     594             :   /* FIXME: MEM TRACING DIAGNOSTICS GO IN HERE */
     595             : 
     596         453 :   FD_VM_INTERP_INSTR_BEGIN(0x64) /* FD_SBPF_OP_LSH_IMM */
     597         453 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L291 */
     598         453 :     reg[ dst ] = (ulong)( FD_RUST_UINT_WRAPPING_SHL( (uint)reg_dst, (uint)imm ) );
     599         453 :   FD_VM_INTERP_INSTR_END;
     600             : 
     601        3702 :   FD_VM_INTERP_BRANCH_BEGIN(0x65) /* FD_SBPF_OP_JSGT_IMM */
     602        3666 :     pc += fd_ulong_if( (long)reg_dst>(long)(int)imm, offset, 0UL );
     603        3666 :   FD_VM_INTERP_BRANCH_END;
     604             : 
     605          39 :   FD_VM_INTERP_INSTR_BEGIN(0x66) /* FD_SBPF_OP_UREM32_IMM */
     606          39 :     reg[ dst ] = (ulong)( (uint)reg_dst % (uint)imm );
     607          39 :   FD_VM_INTERP_INSTR_END;
     608             : 
     609         450 :   FD_VM_INTERP_INSTR_BEGIN(0x67) /* FD_SBPF_OP_LSH64_IMM */
     610         450 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L376 */
     611         450 :     reg[ dst ] = FD_RUST_ULONG_WRAPPING_SHL( reg_dst, imm );
     612         450 :   FD_VM_INTERP_INSTR_END;
     613             : 
     614         447 :   FD_VM_INTERP_INSTR_BEGIN(0x6c) /* FD_SBPF_OP_LSH_REG */
     615         447 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L292 */
     616         447 :     reg[ dst ] = (ulong)( FD_RUST_UINT_WRAPPING_SHL( (uint)reg_dst, reg_src ) );
     617         447 :   FD_VM_INTERP_INSTR_END;
     618             : 
     619        3108 :   FD_VM_INTERP_BRANCH_BEGIN(0x6d) /* FD_SBPF_OP_JSGT_REG */
     620        3078 :     pc += fd_ulong_if( (long)reg_dst>(long)reg_src, offset, 0UL );
     621        3078 :   FD_VM_INTERP_BRANCH_END;
     622             : 
     623          48 :   FD_VM_INTERP_INSTR_BEGIN(0x6e) /* FD_SBPF_OP_UREM32_REG */
     624          48 :     if( FD_UNLIKELY( !(uint)reg_src ) ) goto sigfpe;
     625          36 :     reg[ dst ] = (ulong)( (uint)reg_dst % (uint)reg_src );
     626          36 :   FD_VM_INTERP_INSTR_END;
     627             : 
     628           9 :   FD_VM_INTERP_INSTR_BEGIN(0x6f) /* FD_SBPF_OP_LSH64_REG */
     629           9 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L377 */
     630           9 :     reg[ dst ] = FD_RUST_ULONG_WRAPPING_SHL( reg_dst, reg_src );
     631           9 :   FD_VM_INTERP_INSTR_END;
     632             : 
     633             :   /* 0x70 - 0x7f ******************************************************/
     634             : 
     635           9 :   FD_VM_INTERP_INSTR_BEGIN(0x74) /* FD_SBPF_OP_RSH_IMM */
     636           9 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L293 */
     637           9 :     reg[ dst ] = (ulong)( FD_RUST_UINT_WRAPPING_SHR( (uint)reg_dst, imm ) );
     638           9 :   FD_VM_INTERP_INSTR_END;
     639             : 
     640        6714 :   FD_VM_INTERP_BRANCH_BEGIN(0x75) /* FD_SBPF_OP_JSGE_IMM */
     641        6648 :     pc += fd_ulong_if( (long)reg_dst>=(long)(int)imm, offset, 0UL );
     642        6648 :   FD_VM_INTERP_BRANCH_END;
     643             : 
     644          39 :   FD_VM_INTERP_INSTR_BEGIN(0x76) /* FD_SBPF_OP_UREM64_IMM */
     645          39 :     reg[ dst ] = reg_dst % (ulong)imm;
     646          39 :   FD_VM_INTERP_INSTR_END;
     647             : 
     648          12 :   FD_VM_INTERP_INSTR_BEGIN(0x77) /* FD_SBPF_OP_RSH64_IMM */
     649          12 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L378 */
     650          12 :     reg[ dst ] = FD_RUST_ULONG_WRAPPING_SHR( reg_dst, imm );
     651          12 :   FD_VM_INTERP_INSTR_END;
     652             : 
     653           9 :   FD_VM_INTERP_INSTR_BEGIN(0x7c) /* FD_SBPF_OP_RSH_REG */
     654           9 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L294 */
     655           9 :     reg[ dst ] = (ulong)( FD_RUST_UINT_WRAPPING_SHR( (uint)reg_dst, (uint)reg_src ) );
     656           9 :   FD_VM_INTERP_INSTR_END;
     657             : 
     658        5508 :   FD_VM_INTERP_BRANCH_BEGIN(0x7d) /* FD_SBPF_OP_JSGE_REG */
     659        5454 :     pc += fd_ulong_if( (long)reg_dst>=(long)reg_src, offset, 0UL );
     660        5454 :   FD_VM_INTERP_BRANCH_END;
     661             : 
     662          45 :   FD_VM_INTERP_INSTR_BEGIN(0x7e) /* FD_SBPF_OP_UREM64_REG */
     663          45 :     if( FD_UNLIKELY( !reg_src ) ) goto sigfpe;
     664          36 :     reg[ dst ] = reg_dst % reg_src;
     665          36 :   FD_VM_INTERP_INSTR_END;
     666             : 
     667           9 :   FD_VM_INTERP_INSTR_BEGIN(0x7f) /* FD_SBPF_OP_RSH64_REG */
     668           9 :     /* https://github.com/solana-labs/rbpf/blob/8d36530b7071060e2837ebb26f25590db6816048/src/interpreter.rs#L379 */
     669           9 :     reg[ dst ] = FD_RUST_ULONG_WRAPPING_SHR( reg_dst, reg_src );
     670           9 :   FD_VM_INTERP_INSTR_END;
     671             : 
     672             :   /* 0x80-0x8f ********************************************************/
     673             : 
     674           3 :   FD_VM_INTERP_INSTR_BEGIN(0x84) /* FD_SBPF_OP_NEG */
     675           3 :     reg[ dst ] = (ulong)( -(uint)reg_dst );
     676           3 :   FD_VM_INTERP_INSTR_END;
     677             : 
     678           0 :   FD_VM_INTERP_BRANCH_BEGIN(0x85) /* FD_SBPF_OP_CALL_IMM */
     679           0 :     /* imm has already been validated */
     680           0 :     FD_VM_INTERP_STACK_PUSH;
     681           0 :     pc = (ulong)( (long)pc + (long)(int)imm );
     682           0 :   FD_VM_INTERP_BRANCH_END;
     683             : 
     684           9 :   FD_VM_INTERP_BRANCH_BEGIN(0x85depr) { /* FD_SBPF_OP_CALL_IMM */
     685             : 
     686           9 :     fd_sbpf_syscalls_t const * syscall = imm!=fd_sbpf_syscalls_key_null() ? fd_sbpf_syscalls_query_const( syscalls, (ulong)imm, NULL ) : NULL;
     687           9 :     if( FD_UNLIKELY( !syscall ) ) { /* Optimize for the syscall case */
     688             : 
     689             :       /* Note we do the stack push before updating the pc(*). This implies
     690             :        that the call stack frame gets allocated _before_ checking if the
     691             :        call target is valid.  It would be fine to switch the order
     692             :        though such would change the precise faulting semantics of
     693             :        sigtextbr and sigstack.
     694             : 
     695             :        (*)but after checking calldests, see point below. */
     696             : 
     697             :       /* Agave's order of checks
     698             :          (https://github.com/solana-labs/rbpf/blob/v0.8.5/src/interpreter.rs#L486):
     699             :           1. Lookup imm hash in FunctionRegistry (calldests_test is our equivalent)
     700             :           2. Push stack frame
     701             :           3. Check PC
     702             :           4. Update PC
     703             : 
     704             :           Following this precisely is impossible as our PC check also
     705             :           serves as a bounds check for the calldests_test call. So we
     706             :           have to perform step 3 before step 1. The following
     707             :           is a best-effort implementation that should match the VM state
     708             :           in all ways except error code. */
     709             : 
     710             :       /* Special case to handle entrypoint.
     711             :          ebpf::hash_symbol_name(b"entrypoint") = 0xb00c380, and
     712             :          fd_pchash_inverse( 0xb00c380U ) = 0x71e3cf81U */
     713           6 :       if( FD_UNLIKELY( imm==0x71e3cf81U ) ) {
     714           0 :         FD_VM_INTERP_STACK_PUSH;
     715           0 :         pc = entry_pc - 1;
     716           6 :       } else {
     717           6 :         ulong target_pc = (ulong)fd_pchash_inverse( imm );
     718           6 :         if( FD_UNLIKELY( target_pc>=text_cnt ) ) {
     719           6 :           goto sigillbr; /* different return between 0x85 and 0x8d */
     720           6 :         }
     721           0 :         if( FD_UNLIKELY( !fd_sbpf_calldests_test( calldests, target_pc ) ) ) {
     722           0 :           goto sigillbr;
     723           0 :         }
     724           0 :         FD_VM_INTERP_STACK_PUSH;
     725           0 :         pc = target_pc - 1;
     726           0 :       }
     727             : 
     728           6 :     } else {
     729             : 
     730           3 :       FD_VM_INTERP_SYSCALL_EXEC;
     731             : 
     732           3 :     }
     733           9 :   } FD_VM_INTERP_BRANCH_END;
     734             : 
     735          39 :   FD_VM_INTERP_INSTR_BEGIN(0x86) /* FD_SBPF_OP_LMUL32_IMM */
     736          39 :     reg[ dst ] = (ulong)( (uint)reg_dst * imm );
     737          39 :   FD_VM_INTERP_INSTR_END;
     738             : 
     739           9 :   FD_VM_INTERP_INSTR_BEGIN(0x87) { /* FD_SBPF_OP_STW */
     740           9 :     ulong vaddr   = reg_dst + offset;
     741           9 :     ulong haddr   = fd_vm_mem_haddr( vm, vaddr, sizeof(uint), region_haddr, region_st_sz, 1, 0UL );
     742           9 :     int   sigsegv = !haddr;
     743           9 :     if( FD_UNLIKELY( sigsegv ) ) {
     744           6 :       vm->segv_vaddr       = vaddr;
     745           6 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_ST;
     746           6 :       vm->segv_access_len  = 4UL;
     747           6 :       goto sigsegv;
     748           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     749           3 :     fd_vm_mem_st_4( haddr, imm );
     750           3 :   } FD_VM_INTERP_INSTR_END;
     751             : 
     752           3 :   FD_VM_INTERP_INSTR_BEGIN(0x87depr) /* FD_SBPF_OP_NEG64 deprecated */
     753           3 :     reg[ dst ] = -reg_dst;
     754           3 :   FD_VM_INTERP_INSTR_END;
     755             : 
     756         108 :   FD_VM_INTERP_INSTR_BEGIN(0x8c) { /* FD_SBPF_OP_LDXW */
     757         108 :     ulong vaddr   = reg_src + offset;
     758         108 :     ulong haddr   = fd_vm_mem_haddr( vm, vaddr, sizeof(uint), region_haddr, region_ld_sz, 0, 0UL );
     759         108 :     int   sigsegv = !haddr;
     760         108 :     if( FD_UNLIKELY( sigsegv ) ) {
     761          48 :       vm->segv_vaddr       = vaddr;
     762          48 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_LD;
     763          48 :       vm->segv_access_len  = 4UL;
     764          48 :       goto sigsegv; /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     765          48 :     }
     766          60 :     reg[ dst ] = fd_vm_mem_ld_4( haddr );
     767          60 :   }
     768          60 :   FD_VM_INTERP_INSTR_END;
     769             : 
     770           0 :   FD_VM_INTERP_BRANCH_BEGIN(0x8d) { /* FD_SBPF_OP_CALL_REG */
     771           0 :     FD_VM_INTERP_STACK_PUSH;
     772           0 :     ulong target_pc = (reg_src - vm->text_off) / 8UL;
     773           0 :     if( FD_UNLIKELY( target_pc>=text_cnt ) ) goto sigtextbr;
     774           0 :     if( FD_UNLIKELY( !fd_sbpf_calldests_test( calldests, target_pc ) ) ) {
     775           0 :       goto sigillbr;
     776           0 :     }
     777           0 :     pc = target_pc - 1;
     778           0 :   } FD_VM_INTERP_BRANCH_END;
     779             : 
     780          42 :   FD_VM_INTERP_BRANCH_BEGIN(0x8ddepr) { /* FD_SBPF_OP_CALL_REG */
     781             : 
     782          42 :     FD_VM_INTERP_STACK_PUSH;
     783             : 
     784          42 :     ulong vaddr = fd_sbpf_callx_uses_src_reg_enabled( sbpf_version ) ? reg_src : reg[ imm & 15U ];
     785             : 
     786             :     /* Notes: Agave checks region and target_pc before updating the pc.
     787             :        To match their state, we do the same, even though we could simply
     788             :        update the pc and let BRANCH_END fail.
     789             :        Also, Agave doesn't check alignment. */
     790             : 
     791          42 :     ulong region = vaddr >> 32;
     792             :     /* ulong align  = vaddr & 7UL; */
     793          42 :     ulong target_pc = ((vaddr & FD_VM_OFFSET_MASK) - vm->text_off) / 8UL;
     794          42 :     if( FD_UNLIKELY( (region!=1UL) | (target_pc>=text_cnt) ) ) goto sigtextbr; /* Note: untaken branches don't consume BTB */
     795           0 :     pc = target_pc - 1;
     796             : 
     797           0 :   } FD_VM_INTERP_BRANCH_END;
     798             : 
     799          33 :   FD_VM_INTERP_INSTR_BEGIN(0x8e) /* FD_SBPF_OP_LMUL32_REG */
     800          33 :     reg[ dst ] = (ulong)( (uint)reg_dst * (uint)reg_src );
     801          33 :   FD_VM_INTERP_INSTR_END;
     802             : 
     803           9 :   FD_VM_INTERP_INSTR_BEGIN(0x8f) { /* FD_SBPF_OP_STXW */
     804           9 :     ulong vaddr    = reg_dst + offset;
     805           9 :     ulong haddr    = fd_vm_mem_haddr( vm, vaddr, sizeof(uint), region_haddr, region_st_sz, 1, 0UL );
     806           9 :     int   sigsegv  = !haddr;
     807           9 :     if( FD_UNLIKELY( sigsegv ) ) {
     808           6 :       vm->segv_vaddr       = vaddr;
     809           6 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_ST;
     810           6 :       vm->segv_access_len  = 4UL;
     811           6 :       goto sigsegv;
     812           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     813           3 :     fd_vm_mem_st_4( haddr, (uint)reg_src );
     814           3 :   }
     815           3 :   FD_VM_INTERP_INSTR_END;
     816             : 
     817             :   /* 0x90 - 0x9f ******************************************************/
     818             : 
     819          42 :   FD_VM_INTERP_INSTR_BEGIN(0x94) /* FD_SBPF_OP_MOD_IMM */
     820          42 :     reg[ dst ] = (ulong)( (uint)reg_dst % imm );
     821          42 :   FD_VM_INTERP_INSTR_END;
     822             : 
     823           0 :   FD_VM_INTERP_BRANCH_BEGIN(0x95) { /* FD_SBPF_OP_SYSCALL */
     824             :     /* imm has already been validated */
     825           0 :     fd_sbpf_syscalls_t const * syscall = fd_sbpf_syscalls_query_const( syscalls, (ulong)imm, NULL );
     826           0 :     if( FD_UNLIKELY( !syscall ) ) goto sigillbr;
     827             : 
     828           0 :     FD_VM_INTERP_SYSCALL_EXEC;
     829             : 
     830           0 :   } FD_VM_INTERP_BRANCH_END;
     831             : 
     832          39 :   FD_VM_INTERP_INSTR_BEGIN(0x96) /* FD_SBPF_OP_LMUL64_IMM */
     833          39 :     reg[ dst ] = reg_dst * (ulong)(long)(int)imm;
     834          39 :   FD_VM_INTERP_INSTR_END;
     835             : 
     836           9 :   FD_VM_INTERP_INSTR_BEGIN(0x97) { /* FD_SBPF_OP_STQ */
     837           9 :     ulong vaddr   = reg_dst + offset;
     838           9 :     ulong haddr   = fd_vm_mem_haddr( vm, vaddr, sizeof(ulong), region_haddr, region_st_sz, 1, 0UL );
     839           9 :     int   sigsegv = !haddr;
     840           9 :     if( FD_UNLIKELY( sigsegv ) ) {
     841           6 :       vm->segv_vaddr       = vaddr;
     842           6 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_ST;
     843           6 :       vm->segv_access_len  = 8UL;
     844           6 :       goto sigsegv;
     845           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     846           3 :     fd_vm_mem_st_8( haddr, (ulong)(long)(int)imm );
     847           3 :   }
     848           3 :   FD_VM_INTERP_INSTR_END;
     849             : 
     850          84 :   FD_VM_INTERP_INSTR_BEGIN(0x9c) { /* FD_SBPF_OP_LDXQ */
     851          84 :     ulong vaddr   = reg_src + offset;
     852          84 :     ulong haddr   = fd_vm_mem_haddr( vm, vaddr, sizeof(ulong), region_haddr, region_ld_sz, 0, 0UL );
     853          84 :     int   sigsegv = !haddr;
     854          84 :     if( FD_UNLIKELY( sigsegv ) ) {
     855          42 :       vm->segv_vaddr       = vaddr;
     856          42 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_LD;
     857          42 :       vm->segv_access_len  = 8UL;
     858          42 :       goto sigsegv; /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     859          42 :     }
     860          42 :     reg[ dst ] = fd_vm_mem_ld_8( haddr );
     861          42 :   }
     862          42 :   FD_VM_INTERP_INSTR_END;
     863             : 
     864        5409 :   FD_VM_INTERP_BRANCH_BEGIN(0x9d) /* FD_SBPF_OP_EXIT */
     865        5406 :       /* Agave JIT VM exit implementation analysis below.
     866        5406 : 
     867        5406 :        Agave references:
     868        5406 :        https://github.com/solana-labs/rbpf/blob/v0.8.5/src/interpreter.rs#L503-L509
     869        5406 :        https://github.com/solana-labs/rbpf/blob/v0.8.5/src/jit.rs#L697-L702 */
     870        5406 :     if( FD_UNLIKELY( !frame_cnt ) ) goto sigexit; /* Exit program */
     871           0 :     frame_cnt--;
     872           0 :     reg[6]   = shadow[ frame_cnt ].r6;
     873           0 :     reg[7]   = shadow[ frame_cnt ].r7;
     874           0 :     reg[8]   = shadow[ frame_cnt ].r8;
     875           0 :     reg[9]   = shadow[ frame_cnt ].r9;
     876           0 :     reg[10]  = shadow[ frame_cnt ].r10;
     877           0 :     pc       = shadow[ frame_cnt ].pc;
     878           0 :   FD_VM_INTERP_BRANCH_END;
     879             : 
     880          57 :   FD_VM_INTERP_INSTR_BEGIN(0x9e) /* FD_SBPF_OP_LMUL64_REG */
     881          57 :     reg[ dst ] = reg_dst * reg_src;
     882          57 :   FD_VM_INTERP_INSTR_END;
     883             : 
     884           9 :   FD_VM_INTERP_INSTR_BEGIN(0x9f) { /* FD_SBPF_OP_STXQ */
     885           9 :     ulong vaddr   = reg_dst + offset;
     886           9 :     ulong haddr   = fd_vm_mem_haddr( vm, vaddr, sizeof(ulong), region_haddr, region_st_sz, 1, 0UL );
     887           9 :     int   sigsegv = !haddr;
     888           9 :     if( FD_UNLIKELY( sigsegv ) ) {
     889           6 :       vm->segv_vaddr       = vaddr;
     890           6 :       vm->segv_access_type = FD_VM_ACCESS_TYPE_ST;
     891           6 :       vm->segv_access_len  = 8UL;
     892           6 :       goto sigsegv;
     893           6 :     } /* Note: untaken branches don't consume BTB */ /* FIXME: sigbus */
     894           3 :     fd_vm_mem_st_8( haddr, reg_src );
     895           3 :   }
     896           3 :   FD_VM_INTERP_INSTR_END;
     897             : 
     898          42 :   FD_VM_INTERP_INSTR_BEGIN(0x97depr) /* FD_SBPF_OP_MOD64_IMM */
     899          42 :     reg[ dst ] = reg_dst % (ulong)(long)(int)imm;
     900          42 :   FD_VM_INTERP_INSTR_END;
     901             : 
     902          57 :   FD_VM_INTERP_INSTR_BEGIN(0x9cdepr) /* FD_SBPF_OP_MOD_REG */
     903          57 :     if( FD_UNLIKELY( !(uint)reg_src ) ) goto sigfpe;
     904          42 :     reg[ dst ] = (ulong)( ((uint)reg_dst % (uint)reg_src) );
     905          42 :   FD_VM_INTERP_INSTR_END;
     906             : 
     907          54 :   FD_VM_INTERP_INSTR_BEGIN(0x9fdepr) /* FD_SBPF_OP_MOD64_REG */
     908          54 :     if( FD_UNLIKELY( !reg_src ) ) goto sigfpe;
     909          42 :     reg[ dst ] = reg_dst % reg_src;
     910          42 :   FD_VM_INTERP_INSTR_END;
     911             : 
     912             :   /* 0xa0 - 0xaf ******************************************************/
     913             : 
     914           9 :   FD_VM_INTERP_INSTR_BEGIN(0xa4) /* FD_SBPF_OP_XOR_IMM */
     915           9 :     reg[ dst ] = (ulong)( (uint)reg_dst ^ imm );
     916           9 :   FD_VM_INTERP_INSTR_END;
     917             : 
     918        3126 :   FD_VM_INTERP_BRANCH_BEGIN(0xa5) /* FD_SBPF_OP_JLT_IMM */
     919        3096 :     pc += fd_ulong_if( reg_dst<(ulong)(long)(int)imm, offset, 0UL );
     920        3096 :   FD_VM_INTERP_BRANCH_END;
     921             : 
     922           9 :   FD_VM_INTERP_INSTR_BEGIN(0xa7) /* FD_SBPF_OP_XOR64_IMM */
     923           9 :     reg[ dst ] = reg_dst ^ (ulong)(long)(int)imm;
     924           9 :   FD_VM_INTERP_INSTR_END;
     925             : 
     926           9 :   FD_VM_INTERP_INSTR_BEGIN(0xac) /* FD_SBPF_OP_XOR_REG */
     927           9 :     reg[ dst ] = (ulong)(uint)( reg_dst ^ reg_src );
     928           9 :   FD_VM_INTERP_INSTR_END;
     929             : 
     930        2517 :   FD_VM_INTERP_BRANCH_BEGIN(0xad) /* FD_SBPF_OP_JLT_REG */
     931        2493 :     pc += fd_ulong_if( reg_dst<reg_src, offset, 0UL );
     932        2493 :   FD_VM_INTERP_BRANCH_END;
     933             : 
     934          21 :   FD_VM_INTERP_INSTR_BEGIN(0xaf) /* FD_SBPF_OP_XOR64_REG */
     935          21 :     reg[ dst ] = reg_dst ^ reg_src;
     936          21 :   FD_VM_INTERP_INSTR_END;
     937             : 
     938             :   /* 0xb0 - 0xbf ******************************************************/
     939             : 
     940         330 :   FD_VM_INTERP_INSTR_BEGIN(0xb4) /* FD_SBPF_OP_MOV_IMM */
     941         330 :     reg[ dst ] = (ulong)imm;
     942         330 :   FD_VM_INTERP_INSTR_END;
     943             : 
     944        6126 :   FD_VM_INTERP_BRANCH_BEGIN(0xb5) /* FD_SBPF_OP_JLE_IMM */
     945        6066 :     pc += fd_ulong_if( reg_dst<=(ulong)(long)(int)imm, offset, 0UL );
     946        6066 :   FD_VM_INTERP_BRANCH_END;
     947             : 
     948           3 :   FD_VM_INTERP_INSTR_BEGIN(0xb6) /* FD_SBPF_OP_SHMUL64_IMM */
     949           3 :     reg[ dst ] = (ulong)(( (int128)(long)reg_dst * (int128)(long)(int)imm ) >> 64 );
     950           3 :   FD_VM_INTERP_INSTR_END;
     951             : 
     952       60120 :   FD_VM_INTERP_INSTR_BEGIN(0xb7) /* FD_SBPF_OP_MOV64_IMM */
     953       60120 :     reg[ dst ] = (ulong)(long)(int)imm;
     954       60120 :   FD_VM_INTERP_INSTR_END;
     955             : 
     956           3 :   FD_VM_INTERP_INSTR_BEGIN(0xbc) /* FD_SBPF_OP_MOV_REG */
     957           3 :     reg[ dst ] = (ulong)(long)(int)reg_src;
     958           3 :   FD_VM_INTERP_INSTR_END;
     959             : 
     960          15 :   FD_VM_INTERP_INSTR_BEGIN(0xbcdepr) /* FD_SBPF_OP_MOV_REG deprecated SIMD-1074 */
     961          15 :     reg[ dst ] = (ulong)(uint)reg_src;
     962          15 :   FD_VM_INTERP_INSTR_END;
     963             : 
     964        4917 :   FD_VM_INTERP_BRANCH_BEGIN(0xbd) /* FD_SBPF_OP_JLE_REG */
     965        4869 :     pc += fd_ulong_if( reg_dst<=reg_src, offset, 0UL );
     966        4869 :   FD_VM_INTERP_BRANCH_END;
     967             : 
     968           3 :   FD_VM_INTERP_INSTR_BEGIN(0xbe) /* FD_SBPF_OP_SHMUL64_REG */
     969           3 :     reg[ dst ] = (ulong)(( (int128)(long)reg_dst * (int128)(long)reg_src ) >> 64 );
     970           3 :   FD_VM_INTERP_INSTR_END;
     971             : 
     972       60036 :   FD_VM_INTERP_INSTR_BEGIN(0xbf) /* FD_SBPF_OP_MOV64_REG */
     973       60036 :     reg[ dst ] = reg_src;
     974       60036 :   FD_VM_INTERP_INSTR_END;
     975             : 
     976             :   /* 0xc0 - 0xcf ******************************************************/
     977             : 
     978           9 :   FD_VM_INTERP_INSTR_BEGIN(0xc4) /* FD_SBPF_OP_ARSH_IMM */
     979           9 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst >> imm ); /* FIXME: WIDE SHIFTS, STRICT SIGN EXTENSION */
     980           9 :   FD_VM_INTERP_INSTR_END;
     981             : 
     982        3102 :   FD_VM_INTERP_BRANCH_BEGIN(0xc5) /* FD_SBPF_OP_JSLT_IMM */ /* FIXME: CHECK IMM SIGN EXTENSION */
     983        3072 :     pc += fd_ulong_if( (long)reg_dst<(long)(int)imm, offset, 0UL );
     984        3072 :   FD_VM_INTERP_BRANCH_END;
     985             : 
     986          45 :   FD_VM_INTERP_INSTR_BEGIN(0xc6) /* FD_SBPF_OP_SDIV32_IMM */
     987          45 :     if( FD_UNLIKELY( ((int)reg_dst==INT_MIN) & ((int)imm==-1) ) ) goto sigfpeof;
     988          39 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst / (int)imm );
     989          39 :   FD_VM_INTERP_INSTR_END;
     990             : 
     991           9 :   FD_VM_INTERP_INSTR_BEGIN(0xc7) /* FD_SBPF_OP_ARSH64_IMM */
     992           9 :     reg[ dst ] = (ulong)( (long)reg_dst >> imm ); /* FIXME: WIDE SHIFTS, STRICT SIGN EXTENSION */
     993           9 :   FD_VM_INTERP_INSTR_END;
     994             : 
     995          12 :   FD_VM_INTERP_INSTR_BEGIN(0xcc) /* FD_SBPF_OP_ARSH_REG */
     996          12 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst >> (uint)reg_src ); /* FIXME: WIDE SHIFTS, STRICT SIGN EXTENSION */
     997          12 :   FD_VM_INTERP_INSTR_END;
     998             : 
     999        3108 :   FD_VM_INTERP_BRANCH_BEGIN(0xcd) /* FD_SBPF_OP_JSLT_REG */
    1000        3078 :     pc += fd_ulong_if( (long)reg_dst<(long)reg_src, offset, 0UL );
    1001        3078 :   FD_VM_INTERP_BRANCH_END;
    1002             : 
    1003          54 :   FD_VM_INTERP_INSTR_BEGIN(0xce) /* FD_SBPF_OP_SDIV32_REG */
    1004          54 :     if( FD_UNLIKELY( !(int)reg_src ) ) goto sigfpe;
    1005          42 :     if( FD_UNLIKELY( ((int)reg_dst==INT_MIN) & ((int)reg_src==-1) ) ) goto sigfpeof;
    1006          36 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst / (int)reg_src );
    1007          36 :   FD_VM_INTERP_INSTR_END;
    1008             : 
    1009           9 :   FD_VM_INTERP_INSTR_BEGIN(0xcf) /* FD_SBPF_OP_ARSH64_REG */
    1010           9 :     reg[ dst ] = (ulong)( (long)reg_dst >> reg_src ); /* FIXME: WIDE SHIFTS, STRICT SIGN EXTENSION */
    1011           9 :   FD_VM_INTERP_INSTR_END;
    1012             : 
    1013             :   /* 0xd0 - 0xdf ******************************************************/
    1014             : 
    1015          21 :   FD_VM_INTERP_INSTR_BEGIN(0xd4) /* FD_SBPF_OP_END_LE */
    1016          21 :     switch( imm ) {
    1017           9 :     case 16U: reg[ dst ] = (ushort)reg_dst; break;
    1018           3 :     case 32U: reg[ dst ] = (uint)  reg_dst; break;
    1019           3 :     case 64U:                               break;
    1020           6 :     default: goto siginv;
    1021          21 :     }
    1022          15 :   FD_VM_INTERP_INSTR_END;
    1023             : 
    1024        2460 :   FD_VM_INTERP_BRANCH_BEGIN(0xd5) /* FD_SBPF_OP_JSLE_IMM */
    1025        2436 :     pc += fd_ulong_if( (long)reg_dst<=(long)(int)imm, offset, 0UL );
    1026        2436 :   FD_VM_INTERP_BRANCH_END;
    1027             : 
    1028          42 :   FD_VM_INTERP_INSTR_BEGIN(0xd6) /* FD_SBPF_OP_SDIV64_IMM */
    1029          42 :     if( FD_UNLIKELY( ((long)reg_dst==LONG_MIN) & ((long)(int)imm==-1L) ) ) goto sigfpeof;
    1030          39 :     reg[ dst ] = (ulong)( (long)reg_dst / (long)(int)imm );
    1031          39 :   FD_VM_INTERP_INSTR_END;
    1032             : 
    1033          75 :   FD_VM_INTERP_INSTR_BEGIN(0xdc) /* FD_SBPF_OP_END_BE */
    1034          75 :     switch( imm ) {
    1035          42 :     case 16U: reg[ dst ] = (ulong)fd_ushort_bswap( (ushort)reg_dst ); break;
    1036          12 :     case 32U: reg[ dst ] = (ulong)fd_uint_bswap  ( (uint)  reg_dst ); break;
    1037           9 :     case 64U: reg[ dst ] =        fd_ulong_bswap ( (ulong) reg_dst ); break;
    1038          12 :     default: goto siginv;
    1039          75 :     }
    1040          63 :   FD_VM_INTERP_INSTR_END;
    1041             : 
    1042        1854 :   FD_VM_INTERP_BRANCH_BEGIN(0xdd) /* FD_SBPF_OP_JSLE_REG */
    1043        1836 :     pc += fd_ulong_if( (long)reg_dst<=(long)reg_src, offset, 0UL );
    1044        1836 :   FD_VM_INTERP_BRANCH_END;
    1045             : 
    1046          48 :   FD_VM_INTERP_INSTR_BEGIN(0xde) /* FD_SBPF_OP_SDIV64_REG */
    1047          48 :     if( FD_UNLIKELY( !reg_src ) ) goto sigfpe;
    1048          39 :     if( FD_UNLIKELY( ((long)reg_dst==LONG_MIN) & ((long)reg_src==-1L) ) ) goto sigfpeof;
    1049          36 :     reg[ dst ] = (ulong)( (long)reg_dst / (long)reg_src );
    1050          36 :   FD_VM_INTERP_INSTR_END;
    1051             : 
    1052             :   /* 0xe0 - 0xef ******************************************************/
    1053             : 
    1054          45 :   FD_VM_INTERP_INSTR_BEGIN(0xe6) /* FD_SBPF_OP_SREM32_IMM */
    1055          45 :     if( FD_UNLIKELY( ((int)reg_dst==INT_MIN) & ((int)imm==-1) ) ) goto sigfpeof;
    1056          39 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst % (int)imm );
    1057          39 :   FD_VM_INTERP_INSTR_END;
    1058             : 
    1059          54 :   FD_VM_INTERP_INSTR_BEGIN(0xee) /* FD_SBPF_OP_SREM32_REG */
    1060          54 :     if( FD_UNLIKELY( !(int)reg_src ) ) goto sigfpe;
    1061          42 :     if( FD_UNLIKELY( ((int)reg_dst==INT_MIN) & ((int)reg_src==-1) ) ) goto sigfpeof;
    1062          36 :     reg[ dst ] = (ulong)(uint)( (int)reg_dst % (int)reg_src );
    1063          36 :   FD_VM_INTERP_INSTR_END;
    1064             : 
    1065             :   /* 0xf0 - 0xff ******************************************************/
    1066             : 
    1067          42 :   FD_VM_INTERP_INSTR_BEGIN(0xf6) /* FD_SBPF_OP_SREM64_IMM */
    1068          42 :     if( FD_UNLIKELY( ((long)reg_dst==LONG_MIN) & ((long)(int)imm==-1L) ) ) goto sigfpeof;
    1069          39 :     reg[ dst ] = (ulong)( (long)reg_dst % (long)(int)imm );
    1070          39 :   FD_VM_INTERP_INSTR_END;
    1071             : 
    1072          21 :   FD_VM_INTERP_INSTR_BEGIN(0xf7) /* FD_SBPF_OP_HOR64 */
    1073          21 :     reg[ dst ] = reg_dst | (((ulong)imm) << 32);
    1074          21 :   FD_VM_INTERP_INSTR_END;
    1075             : 
    1076          48 :   FD_VM_INTERP_INSTR_BEGIN(0xfe) /* FD_SBPF_OP_SREM64_REG */
    1077          48 :     if( FD_UNLIKELY( !reg_src ) ) goto sigfpe;
    1078          39 :     if( FD_UNLIKELY( ((long)reg_dst==LONG_MIN) & ((long)reg_src==-1L) ) ) goto sigfpeof;
    1079          36 :     reg[ dst ] = (ulong)( (long)reg_dst % (long)reg_src );
    1080          36 :   FD_VM_INTERP_INSTR_END;
    1081             : 
    1082             :   /* FIXME: sigbus/sigrdonly are mapped to sigsegv for simplicity
    1083             :      currently but could be enabled if desired. */
    1084             : 
    1085             :   /* Note: sigtextbr is for sigtext errors that occur on branching
    1086             :      instructions (i.e., prefixed with FD_VM_INTERP_BRANCH_BEGIN).
    1087             :      We skip a repeat ic accumulation in FD_VM_INTERP_FAULT */
    1088             : 
    1089             :   /* FD_VM_INTERP_FAULT accumulates to ic and cu all non-faulting
    1090             :      instructions preceeding a fault generated by a non-branching
    1091             :      instruction.  When a non-branching instruction faults, pc is at the
    1092             :      instruction and the number of non-branching instructions that have
    1093             :      not yet been reflected in ic and cu is:
    1094             : 
    1095             :        pc - pc0 + 1 - ic_correction
    1096             : 
    1097             :      as per the accounting described above. +1 to include the faulting
    1098             :      instruction itself.
    1099             : 
    1100             :      Note that, for a sigtext caused by a branch instruction, pc0==pc
    1101             :      (from the BRANCH_END) and ic_correction==0 (from the BRANCH_BEGIN)
    1102             :      such that the below does not change the already current values in
    1103             :      ic and cu.  Thus it also "does the right thing" in both the
    1104             :      non-branching and branching cases for sigtext.  The same applies to
    1105             :      sigsplit. */
    1106             : 
    1107           0 : #define FD_VM_INTERP_FAULT                                                                 \
    1108        1626 :   ic_correction = pc - pc0 + 1UL - ic_correction;                                          \
    1109        1626 :   ic += ic_correction;                                                                     \
    1110        1626 :   if ( FD_UNLIKELY( ic_correction > cu ) ) err = FD_VM_ERR_EBPF_EXCEEDED_MAX_INSTRUCTIONS; \
    1111        1626 :   cu -= fd_ulong_min( ic_correction, cu )
    1112             : 
    1113          78 : sigtext:     err = FD_VM_ERR_EBPF_EXECUTION_OVERRUN;                                     FD_VM_INTERP_FAULT;                    goto interp_halt;
    1114          42 : sigtextbr:   err = FD_VM_ERR_EBPF_CALL_OUTSIDE_TEXT_SEGMENT;                             /* ic current */     /* cu current */  goto interp_halt;
    1115           0 : sigstack:    err = FD_VM_ERR_EBPF_CALL_DEPTH_EXCEEDED;                                   /* ic current */     /* cu current */  goto interp_halt;
    1116        1176 : sigill:      err = FD_VM_ERR_EBPF_UNSUPPORTED_INSTRUCTION;                               FD_VM_INTERP_FAULT;                    goto interp_halt;
    1117           6 : sigillbr:    err = FD_VM_ERR_EBPF_UNSUPPORTED_INSTRUCTION;                               /* ic current */     /* cu current */  goto interp_halt;
    1118          18 : siginv:      err = FD_VM_ERR_EBPF_INVALID_INSTRUCTION;                                   /* ic current */     /* cu current */  goto interp_halt;
    1119         198 : sigsegv:     err = fd_vm_generate_access_violation( vm->segv_vaddr, vm->sbpf_version );  FD_VM_INTERP_FAULT;                    goto interp_halt;
    1120         681 : sigcost:     err = FD_VM_ERR_EBPF_EXCEEDED_MAX_INSTRUCTIONS;                             /* ic current */     cu = 0UL;         goto interp_halt;
    1121           0 : sigsyscall:  err = FD_VM_ERR_EBPF_SYSCALL_ERROR;                                         /* ic current */     /* cu current */  goto interp_halt;
    1122         138 : sigfpe:      err = FD_VM_ERR_EBPF_DIVIDE_BY_ZERO;                                        FD_VM_INTERP_FAULT;                    goto interp_halt;
    1123          36 : sigfpeof:    err = FD_VM_ERR_EBPF_DIVIDE_OVERFLOW;                                       FD_VM_INTERP_FAULT;                    goto interp_halt;
    1124        5406 : sigexit:     /* err current */                                                           /* ic current */     /* cu current */  goto interp_halt;
    1125             : 
    1126           0 : #undef FD_VM_INTERP_FAULT
    1127             : 
    1128        7779 : interp_halt:
    1129             : 
    1130             :   /* Pack the unpacked execution state into vm to give a precise view of
    1131             :      the execution when the vm halted. */
    1132             : 
    1133        7779 :   vm->pc        = pc;
    1134        7779 :   vm->ic        = ic;
    1135        7779 :   vm->cu        = cu;
    1136        7779 :   vm->frame_cnt = frame_cnt;
    1137             : 
    1138        7779 : # undef FD_VM_INTERP_STACK_PUSH
    1139             : 
    1140        7779 : # undef FD_VM_INTERP_BRANCH_END
    1141        7779 : # undef FD_VM_INTERP_BRANCH_BEGIN
    1142             : 
    1143        7779 : # undef FD_VM_INTERP_INSTR_END
    1144        7779 : # undef FD_VM_INTERP_INSTR_BEGIN
    1145        7779 : # undef FD_VM_INTERP_INSTR_EXEC
    1146             : 
    1147        7779 : # if defined(__clang__)
    1148        7779 : # pragma clang diagnostic pop
    1149        7779 : # endif
    1150             : 
    1151        7779 : # if defined(__GNUC__)
    1152        7779 : # pragma GCC diagnostic pop
    1153        7779 : # endif
    1154             : 
    1155             : /*   Agave/JIT CU model analysis (and why we are conformant!):
    1156             : 
    1157             :      The Agave JIT employs a similar strategy of accumulating instructions
    1158             :      in a linear run and processing them at the start of a new linear
    1159             :      run/branch (side note: the JIT treats the LDQ instruction as a "branch"
    1160             :      that jumps pc + 2).
    1161             : 
    1162             :      In what is assumed to be an act of register conservation, the JIT
    1163             :      uses a catch-all "instruction meter" (IM) register (REGISTER_INSTRUCTION_METER)
    1164             :      that represents two different interpretations of the question
    1165             :      "how many instructions can I execute?".
    1166             : 
    1167             :      The IM, depending on where we are in the execution, either represents:
    1168             :         1. IM => The number of instructions remaining before exhausting CU
    1169             :         budget. This is analagous to vm->cu in our interpreter.
    1170             :         2. IM' => The last pc you can execute in the current linear run before
    1171             :         exhausting CU budget.  Mathematically, IM' = IM + pc0
    1172             :         where pc0, just like our definition, is the start of the linear run.
    1173             : 
    1174             :         Note: IM' can go past the actual basic block/segment. In-fact,
    1175             :         it typically does, and implies we can execute the full block without
    1176             :         exhausting CU budget (reminder that LDQ is treated as a branch).
    1177             : 
    1178             :       By default, the IM' form is used during execution. The IM form is used:
    1179             :         - (transiently) during the processing of a branch instruction
    1180             :         - in post-VM cleanup (updates EbpfVm::previous_instruction_meter).
    1181             : 
    1182             :       When a branch instruction is encountered, the JIT checks
    1183             :       for CU exhaustion with pc > IM', and throws an exception if so. This is valid,
    1184             :       because as described above, IM' is the largest PC you can reach.
    1185             : 
    1186             :       If we haven't exhausted our CU limit, it updates IM':
    1187             :         1. IM = IM' - (pc + 1)  # Note that IM' at this point is IM + pc0',
    1188             :                                 # where pc0' is the start of the current linear run.
    1189             :         2. IM' = IM + pc0       # pc0 is the start of the new linear run (typically the target pc)
    1190             : 
    1191             :       Code (that does the above in one ALU instruction):
    1192             :        https://github.com/solana-labs/rbpf/blob/v0.8.5/src/jit.rs#L891
    1193             : 
    1194             : 
    1195             :       ### How does this relate to our interpreter?
    1196             : 
    1197             :       This process is similar to FD_VM_INTERP_BRANCH_BEGIN.
    1198             :       We just deal with the IM form throughout (with vm->cu and ic_correction).
    1199             :       If we break down step 1 from above with what we know about IM and IM',
    1200             :       we get the following:
    1201             :         1. IM = IM' - (pc + 1)
    1202             :            IM = (IM + pc0') - (pc + 1)
    1203             :            IM = IM + (pc0' - (pc + 1))
    1204             :            IM = IM - ((pc + 1) - pc0')
    1205             :            IM = IM - ic_correction
    1206             :       Here, ((pc + 1) - pc0') is the number of instrutions executed in the current
    1207             :       linear run. This is the same as our ic_correction(*) in FD_VM_INTERP_BRANCH_BEGIN.
    1208             : 
    1209             :       If we replace IM with cu, this effectively becomes the
    1210             :            cu -= ic_correction
    1211             :       line in FD_VM_INTERP_BRANCH_BEGIN.
    1212             : 
    1213             :       (*) Note: ic_correction (also) takes two forms. It is either the instruction
    1214             :       accumulator or the number of instructions executed in the current linear run.
    1215             :       It (transiently) takes the latter form during FD_VM_INTERP_BRANCH_BEGIN and
    1216             :       FD_VM_INTERP_FAULT, and the former form otherwise.
    1217             : */
    1218             : 
    1219             : /* (WIP) Precise faulting and the Agave JIT:
    1220             : 
    1221             :    Since the cost model is a part of consensus, we need to conform with the Agave/JIT
    1222             :    cost model 1:1. To achieve that, our faulting model also needs to match precisely. This
    1223             :    section covers the various faults that the respective VMs implement and how they match.
    1224             : 
    1225             :    # Normal VM exit (sigexit):
    1226             :    VM exit instruction entrypoint: https://github.com/solana-labs/rbpf/blob/12237895305ab38514be865ebed6268553e4f589/src/jit.rs#L698-L708
    1227             : 
    1228             :    Pseudocode (with FD semantics):
    1229             :    ```
    1230             :     # pc is at the exit instruction
    1231             :     # pc0 is the start of the current linear run
    1232             :     if (frame_cnt == 0) {
    1233             :         goto sigexit;
    1234             :     }
    1235             :     ...
    1236             : 
    1237             :     sigexit:
    1238             :     if IM' <= pc {
    1239             :       goto sigcost;
    1240             :     } else {
    1241             :       goto interp_halt;
    1242             :     }
    1243             :     ```
    1244             : 
    1245             :     Breaking down the IM' < pc check:
    1246             :     - IM' = IM + pc0
    1247             :     - pc  = ic + pc0, where (ic + 1) is the number of instructions executed in the current linear run
    1248             : 
    1249             :     IM' <= pc
    1250             :     IM + pc0 <= ic + pc0
    1251             :     IM <= ic
    1252             :     IM <= pc - pc0
    1253             :     IM < pc - pc0 + 1 # all unsigned integers
    1254             :     IM < ic_correction
    1255             : 
    1256             :     This is analagous to the ic_correction>cu check in VM_INTERP_BRANCH_BEGIN.
    1257             : 
    1258             :    # (TODO) Text Overrun (sigtext/sigsplit):
    1259             : 
    1260             : */

Generated by: LCOV version 1.14