Line data Source code
1 : #ifndef HEADER_fd_src_flamenco_vm_fd_vm_private_h
2 : #define HEADER_fd_src_flamenco_vm_fd_vm_private_h
3 :
4 : #include "fd_vm.h"
5 :
6 : #include "../runtime/fd_runtime_const.h"
7 : #include "../runtime/fd_runtime.h"
8 : #include "fd_vm_base.h"
9 :
10 : /* FD_VM_ALIGN_RUST_{} define the alignments for relevant rust types.
11 : Alignments are derived with std::mem::align_of::<T>() and are enforced
12 : by the VM (with the exception of v1 loader).
13 :
14 : In our implementation, when calling FD_VM_MEM_HADDR_ST / FD_VM_MEM_HADDR_LD,
15 : we need to make sure we're passing the correct alignment based on the Rust
16 : type in the corresponding mapping in Agave.
17 :
18 : FD_VM_ALIGN_RUST_{} has been generated with this Rust code:
19 : ```rust
20 : pub type Epoch = u64;
21 : pub struct Pubkey(pub [u8; 32]);
22 : pub struct AccountMeta {
23 : pub lamports: u64,
24 : pub rent_epoch: Epoch,
25 : pub owner: Pubkey,
26 : pub executable: bool,
27 : }
28 :
29 : pub struct PodScalar(pub [u8; 32]);
30 :
31 : fn main() {
32 : println!("u8: {}", std::mem::align_of::<u8>());
33 : println!("u32: {}", std::mem::align_of::<u32>());
34 : println!("u64: {}", std::mem::align_of::<u64>());
35 : println!("u128: {}", std::mem::align_of::<u128>());
36 : println!("&[u8]: {}", std::mem::align_of::<&[u8]>());
37 : println!("AccountMeta: {}", std::mem::align_of::<AccountMeta>());
38 : println!("PodScalar: {}", std::mem::align_of::<PodScalar>());
39 : println!("Pubkey: {}", std::mem::align_of::<Pubkey>());
40 : }
41 : ``` */
42 :
43 93 : #define FD_VM_ALIGN_RUST_U8 (1UL)
44 : #define FD_VM_ALIGN_RUST_U32 (4UL)
45 15 : #define FD_VM_ALIGN_RUST_I32 (4UL)
46 : #define FD_VM_ALIGN_RUST_U64 (8UL)
47 : #define FD_VM_ALIGN_RUST_U128 (16UL)
48 : #define FD_VM_ALIGN_RUST_SLICE_U8_REF (8UL)
49 18 : #define FD_VM_ALIGN_RUST_POD_U8_ARRAY (1UL)
50 0 : #define FD_VM_ALIGN_RUST_PUBKEY (1UL)
51 0 : #define FD_VM_ALIGN_RUST_SYSVAR_CLOCK (8UL)
52 0 : #define FD_VM_ALIGN_RUST_SYSVAR_EPOCH_SCHEDULE (8UL)
53 0 : #define FD_VM_ALIGN_RUST_SYSVAR_RENT (8UL)
54 0 : #define FD_VM_ALIGN_RUST_SYSVAR_LAST_RESTART_SLOT (8UL)
55 : #define FD_VM_ALIGN_RUST_SYSVAR_EPOCH_REWARDS (16UL)
56 : #define FD_VM_ALIGN_RUST_STABLE_INSTRUCTION (8UL)
57 :
58 : /* fd_vm_vec_t is the in-memory representation of a vector descriptor.
59 : Equal in layout to the Rust slice header &[_] and various vector
60 : types in the C version of the syscall API. */
61 : /* FIXME: WHEN IS VADDR NULL AND/OR SZ 0 OKAY? */
62 : /* FIXME: MOVE FD_VM_RUST_VEC_T FROM SYSCALL/FD_VM_CPI.H HERE TOO? */
63 :
64 : #define FD_VM_VEC_ALIGN FD_VM_ALIGN_RUST_SLICE_U8_REF
65 : #define FD_VM_VEC_SIZE (16UL)
66 :
67 : struct __attribute__((packed)) fd_vm_vec {
68 : ulong addr; /* FIXME: NAME -> VADDR */
69 : ulong len; /* FIXME: NAME -> SZ */
70 : };
71 :
72 : typedef struct fd_vm_vec fd_vm_vec_t;
73 :
74 : FD_STATIC_ASSERT( sizeof(fd_vm_vec_t)==FD_VM_VEC_SIZE, fd_vm_vec size mismatch );
75 :
76 : /* SBPF version and features
77 : https://github.com/anza-xyz/sbpf/blob/v0.12.2/src/program.rs#L28
78 : Note: SIMDs enable or disable features, e.g. BPF instructions.
79 : If we have macros with names ENABLE vs DISABLE, we have the advantage that
80 : the condition is always pretty clear: sbpf_version <= activation_version,
81 : but the disadvantage of inconsistent names.
82 : Viceversa, calling everything ENABLE has the risk to invert a <= with a >=
83 : and create a huge mess.
84 : We define both, so hopefully it's foolproof. */
85 :
86 : #define FD_VM_SBPF_REJECT_RODATA_STACK_OVERLAP(v) ( v != FD_SBPF_V0 )
87 : #define FD_VM_SBPF_ENABLE_ELF_VADDR(v) ( v != FD_SBPF_V0 )
88 : /* SIMD-0166 */
89 805499499 : #define FD_VM_SBPF_DYNAMIC_STACK_FRAMES(v) ( v >= FD_SBPF_V1 )
90 : /* SIMD-0173 */
91 7884 : #define FD_VM_SBPF_CALLX_USES_SRC_REG(v) ( v >= FD_SBPF_V2 )
92 : #define FD_VM_SBPF_DISABLE_LDDW(v) ( v >= FD_SBPF_V2 )
93 78000 : #define FD_VM_SBPF_ENABLE_LDDW(v) ( v < FD_SBPF_V2 )
94 : #define FD_VM_SBPF_DISABLE_LE(v) ( v >= FD_SBPF_V2 )
95 39000 : #define FD_VM_SBPF_ENABLE_LE(v) ( v < FD_SBPF_V2 )
96 936000 : #define FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(v) ( v >= FD_SBPF_V2 )
97 : /* SIMD-0174 */
98 1053000 : #define FD_VM_SBPF_ENABLE_PQR(v) ( v >= FD_SBPF_V2 )
99 : #define FD_VM_SBPF_DISABLE_NEG(v) ( v >= FD_SBPF_V2 )
100 39000 : #define FD_VM_SBPF_ENABLE_NEG(v) ( v < FD_SBPF_V2 )
101 62232 : #define FD_VM_SBPF_SWAP_SUB_REG_IMM_OPERANDS(v) ( v >= FD_SBPF_V2 )
102 124464 : #define FD_VM_SBPF_EXPLICIT_SIGN_EXT(v) ( v >= FD_SBPF_V2 )
103 : /* SIMD-0178 + SIMD-0179 */
104 156000 : #define FD_VM_SBPF_STATIC_SYSCALLS(v) ( v >= FD_SBPF_V3 )
105 : /* SIMD-0189 */
106 : #define FD_VM_SBPF_ENABLE_LOWER_BYTECODE_VADDR(v) ( v >= FD_SBPF_V3 )
107 : /* enable_strict_elf_headers is defined in fd_sbpf_loader.h because it's needed
108 : by the ELF loader, not really by the VM
109 : #define FD_VM_SBPF_ENABLE_STRICTER_ELF_HEADERS(v) ( v >= FD_SBPF_V3 ) */
110 :
111 3483 : #define FD_VM_OFFSET_MASK (0xffffffffUL)
112 :
113 : /* https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L32 */
114 0 : #define FD_MAX_ACCOUNT_DATA_GROWTH_PER_TRANSACTION (FD_RUNTIME_ACC_SZ_MAX * 2UL)
115 :
116 : FD_PROTOTYPES_BEGIN
117 :
118 : /* Error logging handholding assertions */
119 :
120 : #ifdef FD_RUNTIME_ERR_HANDHOLDING
121 : /* Asserts that the error and error kind are populated (non-zero) */
122 : #define FD_VM_TEST_ERR_EXISTS( vm ) \
123 : FD_TEST( vm->instr_ctx->txn_out->err.exec_err ); \
124 : FD_TEST( vm->instr_ctx->txn_out->err.exec_err_kind )
125 :
126 : /* Used prior to a FD_VM_ERR_FOR_LOG_INSTR call to deliberately
127 : bypass overwrite handholding checks.
128 : Only use this if you know what you're doing. */
129 : #define FD_VM_PREPARE_ERR_OVERWRITE( vm ) \
130 : vm->instr_ctx->txn_out->err.exec_err = 0; \
131 : vm->instr_ctx->txn_out->err.exec_err_kind = 0
132 :
133 : /* Asserts that the error and error kind are not populated (zero) */
134 : #define FD_VM_TEST_ERR_OVERWRITE( vm ) \
135 : FD_TEST( !vm->instr_ctx->txn_out->err.exec_err ); \
136 : FD_TEST( !vm->instr_ctx->txn_out->err.exec_err_kind )
137 : #else
138 0 : #define FD_VM_TEST_ERR_EXISTS( vm ) ( ( void )0 )
139 0 : #define FD_VM_PREPARE_ERR_OVERWRITE( vm ) ( ( void )0 )
140 93 : #define FD_VM_TEST_ERR_OVERWRITE( vm ) ( ( void )0 )
141 : #endif
142 :
143 : /* Log error within the instr_ctx to match Agave/Rust error. */
144 :
145 57 : #define FD_VM_ERR_FOR_LOG_EBPF( vm, err_ ) (__extension__({ \
146 57 : FD_VM_TEST_ERR_OVERWRITE( vm ); \
147 57 : vm->instr_ctx->txn_out->err.exec_err = err_; \
148 57 : vm->instr_ctx->txn_out->err.exec_err_kind = FD_EXECUTOR_ERR_KIND_EBPF; \
149 57 : }))
150 :
151 36 : #define FD_VM_ERR_FOR_LOG_SYSCALL( vm, err_ ) (__extension__({ \
152 36 : FD_VM_TEST_ERR_OVERWRITE( vm ); \
153 36 : vm->instr_ctx->txn_out->err.exec_err = err_; \
154 36 : vm->instr_ctx->txn_out->err.exec_err_kind = FD_EXECUTOR_ERR_KIND_SYSCALL; \
155 36 : }))
156 :
157 0 : #define FD_VM_ERR_FOR_LOG_INSTR( vm, err_ ) (__extension__({ \
158 0 : FD_VM_TEST_ERR_OVERWRITE( vm ); \
159 0 : vm->instr_ctx->txn_out->err.exec_err = err_; \
160 0 : vm->instr_ctx->txn_out->err.exec_err_kind = FD_EXECUTOR_ERR_KIND_INSTR; \
161 0 : }))
162 :
163 3441 : #define FD_VADDR_TO_REGION( _vaddr ) fd_ulong_min( (_vaddr) >> FD_VM_MEM_MAP_REGION_VIRT_ADDR_BITS, FD_VM_HIGH_REGION )
164 :
165 : /* fd_vm_instr APIs ***************************************************/
166 :
167 : /* FIXME: MIGRATE FD_SBPF_INSTR_T STUFF TO THIS API */
168 :
169 : /* fd_vm_instr returns the SBPF instruction word corresponding to the
170 : given fields. */
171 :
172 : FD_FN_CONST static inline ulong
173 : fd_vm_instr( ulong opcode, /* Assumed valid */
174 : ulong dst, /* Assumed in [0,FD_VM_REG_CNT) */
175 : ulong src, /* Assumed in [0,FD_VM_REG_CNT) */
176 : short offset,
177 16587 : uint imm ) {
178 16587 : return opcode | (dst<<8) | (src<<12) | (((ulong)(ushort)offset)<<16) | (((ulong)imm)<<32);
179 16587 : }
180 :
181 : /* fd_vm_instr_* return the SBPF instruction field for the given word.
182 : fd_vm_instr_{normal,mem}_* only apply to {normal,mem} opclass
183 : instructions. */
184 :
185 381843 : FD_FN_CONST static inline ulong fd_vm_instr_opcode( ulong instr ) { return instr & 255UL; } /* In [0,256) */
186 381843 : FD_FN_CONST static inline ulong fd_vm_instr_dst ( ulong instr ) { return ((instr>> 8) & 15UL); } /* In [0,16) */
187 381843 : FD_FN_CONST static inline ulong fd_vm_instr_src ( ulong instr ) { return ((instr>>12) & 15UL); } /* In [0,16) */
188 381843 : FD_FN_CONST static inline ulong fd_vm_instr_offset( ulong instr ) { return (ulong)(long)(short)(ushort)(instr>>16); }
189 381960 : FD_FN_CONST static inline uint fd_vm_instr_imm ( ulong instr ) { return (uint)(instr>>32); }
190 :
191 0 : FD_FN_CONST static inline ulong fd_vm_instr_opclass ( ulong instr ) { return instr & 7UL; } /* In [0,8) */
192 0 : FD_FN_CONST static inline ulong fd_vm_instr_normal_opsrc ( ulong instr ) { return (instr>>3) & 1UL; } /* In [0,2) */
193 0 : FD_FN_CONST static inline ulong fd_vm_instr_normal_opmode ( ulong instr ) { return (instr>>4) & 15UL; } /* In [0,16) */
194 0 : FD_FN_CONST static inline ulong fd_vm_instr_mem_opsize ( ulong instr ) { return (instr>>3) & 3UL; } /* In [0,4) */
195 0 : FD_FN_CONST static inline ulong fd_vm_instr_mem_opaddrmode( ulong instr ) { return (instr>>5) & 7UL; } /* In [0,16) */
196 :
197 : /* fd_vm_mem API ******************************************************/
198 :
199 : /* fd_vm_mem APIs support the fast mapping of virtual address ranges to
200 : host address ranges. Since the SBPF virtual address space consists
201 : of 4 consecutive 4GiB regions and the mapable size of each region is
202 : less than 4 GiB (as implied by FD_VM_MEM_MAP_REGION_SZ==2^32-1 and
203 : that Solana protocol limits are much smaller still), it is impossible
204 : for a valid virtual address range to span multiple regions. */
205 :
206 : /* fd_vm_mem_cfg configures the vm's tlb arrays. Assumes vm is valid
207 : and vm already has configured the rodata, stack, heap and input
208 : regions. Returns vm. */
209 :
210 : static inline fd_vm_t *
211 8106 : fd_vm_mem_cfg( fd_vm_t * vm ) {
212 8106 : vm->region_haddr[0] = 0UL; vm->region_ld_sz[0] = (uint)0UL; vm->region_st_sz[0] = (uint)0UL;
213 8106 : vm->region_haddr[FD_VM_PROG_REGION] = (ulong)vm->rodata; vm->region_ld_sz[FD_VM_PROG_REGION] = (uint)vm->rodata_sz; vm->region_st_sz[FD_VM_PROG_REGION] = (uint)0UL;
214 8106 : vm->region_haddr[FD_VM_STACK_REGION] = (ulong)vm->stack; vm->region_ld_sz[FD_VM_STACK_REGION] = (uint)FD_VM_STACK_MAX; vm->region_st_sz[FD_VM_STACK_REGION] = (uint)FD_VM_STACK_MAX;
215 8106 : vm->region_haddr[FD_VM_HEAP_REGION] = (ulong)vm->heap; vm->region_ld_sz[FD_VM_HEAP_REGION] = (uint)vm->heap_max; vm->region_st_sz[FD_VM_HEAP_REGION] = (uint)vm->heap_max;
216 8106 : vm->region_haddr[5] = 0UL; vm->region_ld_sz[5] = (uint)0UL; vm->region_st_sz[5] = (uint)0UL;
217 8106 : if( vm->direct_mapping || !vm->input_mem_regions_cnt ) {
218 : /* When direct mapping is enabled, we don't use these fields because
219 : the load and stores are fragmented. */
220 450 : vm->region_haddr[FD_VM_INPUT_REGION] = 0UL;
221 450 : vm->region_ld_sz[FD_VM_INPUT_REGION] = 0U;
222 450 : vm->region_st_sz[FD_VM_INPUT_REGION] = 0U;
223 7656 : } else {
224 7656 : vm->region_haddr[FD_VM_INPUT_REGION] = vm->input_mem_regions[0].haddr;
225 7656 : vm->region_ld_sz[FD_VM_INPUT_REGION] = vm->input_mem_regions[0].region_sz;
226 7656 : vm->region_st_sz[FD_VM_INPUT_REGION] = vm->input_mem_regions[0].region_sz;
227 7656 : }
228 8106 : return vm;
229 8106 : }
230 :
231 : /* Simplified version of Agave's `generate_access_violation()` function
232 : that simply returns either FD_VM_ERR_EBPF_ACCESS_VIOLATION or
233 : FD_VM_ERR_EBPF_STACK_ACCESS_VIOLATION. This has no consensus
234 : effects and is purely for logging purposes for fuzzing. Returns
235 : FD_VM_ERR_EBPF_STACK_ACCESS_VIOLATION if the provided vaddr is in the
236 : stack (0x200000000) and FD_VM_ERR_EBPF_ACCESS_VIOLATION otherwise.
237 :
238 : https://github.com/anza-xyz/sbpf/blob/v0.11.1/src/memory_region.rs#L834-L869 */
239 : static FD_FN_PURE inline int
240 255 : fd_vm_generate_access_violation( ulong vaddr, ulong sbpf_version ) {
241 : /* rel_offset can be negative because there is an edge case where the
242 : first "frame" right before the stack region should also throw a
243 : stack access violation. */
244 255 : long rel_offset = fd_long_sat_sub( (long)vaddr, (long)FD_VM_MEM_MAP_STACK_REGION_START );
245 255 : long stack_frame = rel_offset / (long)FD_VM_STACK_FRAME_SZ;
246 255 : if( !fd_sbpf_dynamic_stack_frames_enabled( sbpf_version ) &&
247 255 : stack_frame>=-1L && stack_frame<=(long)FD_VM_MAX_CALL_DEPTH ) {
248 0 : return FD_VM_ERR_EBPF_STACK_ACCESS_VIOLATION;
249 0 : }
250 255 : return FD_VM_ERR_EBPF_ACCESS_VIOLATION;
251 255 : }
252 :
253 : /* fd_vm_mem_haddr translates the vaddr range [vaddr,vaddr+sz) (in
254 : infinite precision math) into the non-wrapping haddr range
255 : [haddr,haddr+sz). On success, returns haddr and every byte in the
256 : haddr range is a valid address. On failure, returns sentinel and
257 : there was at least one byte in the virtual address range that did not
258 : have a corresponding byte in the host address range.
259 :
260 : IMPORTANT SAFETY TIP! When sz==0, the return value currently is
261 : arbitrary. This is often fine as there should be no
262 : actual accesses to a sz==0 region. However, this also means that
263 : testing return for sentinel is insufficient to tell if mapping
264 : failed. That is, assuming sentinel is a location that could never
265 : happen on success:
266 :
267 : sz!=0 and ret!=sentinel -> success
268 : sz!=0 and ret==sentinel -> failure
269 : sz==0 -> ignore ret, application specific handling
270 :
271 : With ~O(2) extra fast branchless instructions, the below could be
272 : tweaked in the sz==0 case to return NULL or return a non-NULL
273 : sentinel value. What is most optimal practically depends on how
274 : empty ranges and NULL vaddr handling is defined in the application.
275 :
276 : Requires ~O(10) fast branchless assembly instructions with 2 L1 cache
277 : hit loads and pretty good ILP.
278 :
279 : fd_vm_mem_haddr_fast is when the vaddr is for use when it is already
280 : known that the vaddr region has a valid mapping.
281 :
282 : These assumptions don't hold if direct mapping is enabled since input
283 : region lookups become O(log(n)). */
284 :
285 :
286 : /* fd_vm_get_input_mem_region_idx returns the index into the input memory
287 : region array with the largest region offset that is <= the offset that
288 : is passed in. This function makes NO guarantees about the input being
289 : a valid input region offset; the caller is responsible for safely handling
290 : it. */
291 : static inline ulong
292 348 : fd_vm_get_input_mem_region_idx( fd_vm_t const * vm, ulong offset ) {
293 348 : uint left = 0U;
294 348 : uint right = vm->input_mem_regions_cnt - 1U;
295 348 : uint mid = 0U;
296 :
297 576 : while( left<right ) {
298 228 : mid = (left+right) / 2U;
299 228 : if( offset>=vm->input_mem_regions[ mid ].vaddr_offset+vm->input_mem_regions[ mid ].address_space_reserved ) {
300 51 : left = mid + 1U;
301 177 : } else {
302 177 : right = mid;
303 177 : }
304 228 : }
305 348 : return left;
306 348 : }
307 :
308 : /* If the region is an account, handle the resizing logic. This logic
309 : corresponds to
310 : solana_transaction_context::TransactionContext::access_violation_handler
311 :
312 : https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L510-L581 */
313 : static inline void
314 : fd_vm_handle_input_mem_region_oob( fd_vm_t const * vm,
315 : ulong offset,
316 : ulong sz,
317 : ulong region_idx,
318 120 : uchar write ) {
319 : /* If stricter_abi_and_runtime_constraints is not enabled, we don't need to
320 : do anything */
321 120 : if( FD_UNLIKELY( !vm->stricter_abi_and_runtime_constraints ) ) {
322 102 : return;
323 102 : }
324 :
325 : /* If the access is not a write, we don't need to do anything
326 : https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L523-L525 */
327 18 : if( FD_UNLIKELY( !write ) ) {
328 0 : return;
329 0 : }
330 :
331 18 : fd_vm_input_region_t * region = &vm->input_mem_regions[ region_idx ];
332 : /* If the region is not writable, we don't need to do anything
333 : https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L526-L529 */
334 18 : if( FD_UNLIKELY( !region->is_writable ) ) {
335 0 : return;
336 0 : }
337 :
338 : /* Calculate the requested length
339 : https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L532-L535 */
340 18 : ulong requested_len = fd_ulong_sat_sub( fd_ulong_sat_add( offset, sz ), region->vaddr_offset );
341 18 : if( FD_UNLIKELY( requested_len > region->address_space_reserved ) ) {
342 18 : return;
343 18 : }
344 :
345 : /* Calculate the remaining allowed growth
346 : https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L549-L551 */
347 0 : ulong remaining_allowed_growth = fd_ulong_sat_sub(
348 0 : FD_MAX_ACCOUNT_DATA_GROWTH_PER_TRANSACTION,
349 0 : vm->instr_ctx->txn_out->details.accounts_resize_delta );
350 :
351 : /* If the requested length is greater than the size of the region,
352 : resize the region
353 : https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L553-L571 */
354 0 : if( FD_UNLIKELY( requested_len > region->region_sz ) ) {
355 : /* Calculate the new region size
356 : https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L558-L560 */
357 0 : ulong new_region_sz = fd_ulong_min(
358 0 : fd_ulong_min( region->address_space_reserved, FD_RUNTIME_ACC_SZ_MAX ),
359 0 : fd_ulong_sat_add( region->region_sz, remaining_allowed_growth ) );
360 :
361 : /* Resize the account and the region
362 : https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L569-L570 */
363 0 : if( FD_UNLIKELY( new_region_sz > region->region_sz ) ) {
364 0 : vm->instr_ctx->txn_out->details.accounts_resize_delta = fd_ulong_sat_sub(
365 0 : fd_ulong_sat_add( vm->instr_ctx->txn_out->details.accounts_resize_delta, new_region_sz ),
366 0 : region->region_sz );
367 :
368 0 : fd_account_meta_resize( vm->acc_region_metas[ region->acc_region_meta_idx ].meta, new_region_sz );
369 0 : region->region_sz = (uint)new_region_sz;
370 0 : }
371 0 : }
372 0 : }
373 :
374 : /* fd_vm_find_input_mem_region returns the translated haddr for a given
375 : offset into the input region. If an offset/sz is invalid or if an
376 : illegal write is performed, the sentinel value is returned. If the offset
377 : provided is too large, it will choose the upper-most region as the
378 : region_idx. However, it will get caught for being too large of an access
379 : in the multi-region checks. */
380 : static inline ulong
381 : fd_vm_find_input_mem_region( fd_vm_t const * vm,
382 : ulong offset,
383 : ulong sz,
384 : uchar write,
385 348 : ulong sentinel ) {
386 348 : if( FD_UNLIKELY( vm->input_mem_regions_cnt==0 ) ) {
387 0 : return sentinel; /* Access is too large */
388 0 : }
389 :
390 : /* Binary search to find the correct memory region. If direct mapping is not
391 : enabled, then there is only 1 memory region which spans the input region. */
392 348 : ulong region_idx = fd_vm_get_input_mem_region_idx( vm, offset );
393 348 : if( FD_UNLIKELY( region_idx>=vm->input_mem_regions_cnt ) ) {
394 0 : return sentinel; /* Region not found */
395 0 : }
396 :
397 348 : ulong bytes_in_region = fd_ulong_sat_sub( vm->input_mem_regions[ region_idx ].region_sz,
398 348 : fd_ulong_sat_sub( offset, vm->input_mem_regions[ region_idx ].vaddr_offset ) );
399 :
400 : /* If the access is out of bounds, invoke the callback to handle the out of bounds access.
401 : This potentially resizes the region if necessary. */
402 348 : if( FD_UNLIKELY( sz>bytes_in_region ) ) {
403 120 : fd_vm_handle_input_mem_region_oob( vm, offset, sz, region_idx, write );
404 120 : }
405 :
406 : /* After potentially resizing, re-check the bounds */
407 348 : bytes_in_region = fd_ulong_sat_sub( vm->input_mem_regions[ region_idx ].region_sz,
408 348 : fd_ulong_sat_sub( offset, vm->input_mem_regions[ region_idx ].vaddr_offset ) );
409 : /* If the access is still out of bounds, return the sentinel */
410 348 : if( FD_UNLIKELY( sz>bytes_in_region ) ) {
411 120 : return sentinel;
412 120 : }
413 :
414 228 : if( FD_UNLIKELY( write && vm->input_mem_regions[ region_idx ].is_writable==0U ) ) {
415 0 : return sentinel; /* Illegal write */
416 0 : }
417 :
418 228 : ulong start_region_idx = region_idx;
419 :
420 228 : ulong adjusted_haddr = vm->input_mem_regions[ start_region_idx ].haddr + offset - vm->input_mem_regions[ start_region_idx ].vaddr_offset;
421 228 : return adjusted_haddr;
422 228 : }
423 :
424 :
425 : static inline ulong
426 : fd_vm_mem_haddr( fd_vm_t const * vm,
427 : ulong vaddr,
428 : ulong sz,
429 : ulong const * vm_region_haddr, /* indexed [0,6) */
430 : uint const * vm_region_sz, /* indexed [0,6) */
431 : uchar write, /* 1 if the access is a write, 0 if it is a read */
432 3441 : ulong sentinel ) {
433 3441 : ulong region = FD_VADDR_TO_REGION( vaddr );
434 3441 : ulong offset = vaddr & FD_VM_OFFSET_MASK;
435 :
436 : /* Stack memory regions have 4kB unmapped "gaps" in-between each frame, which only exist if...
437 : - dynamic stack frames are not enabled (!(SBPF version >= SBPF_V1))
438 : https://github.com/anza-xyz/agave/blob/v2.2.12/programs/bpf_loader/src/lib.rs#L344-L351
439 : */
440 3441 : if( FD_UNLIKELY( region==FD_VM_STACK_REGION &&
441 3441 : !fd_sbpf_dynamic_stack_frames_enabled( vm->sbpf_version ) ) ) {
442 : /* If an access starts in a gap region, that is an access violation */
443 0 : if( FD_UNLIKELY( !!(vaddr & 0x1000) ) ) {
444 0 : return sentinel;
445 0 : }
446 :
447 : /* To account for the fact that we have gaps in the virtual address space but not in the
448 : physical address space, we need to subtract from the offset the size of all the virtual
449 : gap frames underneath it.
450 :
451 : https://github.com/solana-labs/rbpf/blob/b503a1867a9cfa13f93b4d99679a17fe219831de/src/memory_region.rs#L147-L149 */
452 0 : ulong gap_mask = 0xFFFFFFFFFFFFF000;
453 0 : offset = ( ( offset & gap_mask ) >> 1 ) | ( offset & ~gap_mask );
454 0 : }
455 :
456 3441 : ulong region_sz = (ulong)vm_region_sz[ region ];
457 3441 : ulong sz_max = region_sz - fd_ulong_min( offset, region_sz );
458 :
459 : /* If the region is an account, handle the resizing logic. This logic corresponds to
460 : solana_transaction_context::TransactionContext::access_violation_handler
461 :
462 : https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L510-L581 */
463 3441 : if( region==FD_VM_INPUT_REGION ) {
464 348 : return fd_vm_find_input_mem_region( vm, offset, sz, write, sentinel );
465 348 : }
466 :
467 : # ifdef FD_VM_INTERP_MEM_TRACING_ENABLED
468 : if ( FD_LIKELY( sz<=sz_max ) ) {
469 : fd_vm_trace_event_mem( vm->trace, write, vaddr, sz, vm_region_haddr[ region ] + offset );
470 : }
471 : # endif
472 3093 : return fd_ulong_if( sz<=sz_max, vm_region_haddr[ region ] + offset, sentinel );
473 3441 : }
474 :
475 : static inline ulong
476 : fd_vm_mem_haddr_fast( fd_vm_t const * vm,
477 : ulong vaddr,
478 0 : ulong const * vm_region_haddr ) { /* indexed [0,6) */
479 0 : ulong region = FD_VADDR_TO_REGION( vaddr );
480 0 : ulong offset = vaddr & FD_VM_OFFSET_MASK;
481 0 : if( FD_UNLIKELY( region==FD_VM_INPUT_REGION ) ) {
482 0 : return fd_vm_find_input_mem_region( vm, offset, 1UL, 0, 0UL );
483 0 : }
484 0 : return vm_region_haddr[ region ] + offset;
485 0 : }
486 :
487 54 : FD_FN_PURE static inline ulong fd_vm_mem_ld_1( ulong haddr ) {
488 54 : return (ulong)*(uchar const *)haddr;
489 54 : }
490 :
491 60 : FD_FN_PURE static inline ulong fd_vm_mem_ld_2( ulong haddr ) {
492 60 : ushort t;
493 60 : memcpy( &t, (void const *)haddr, sizeof(ushort) );
494 60 : return (ulong)t;
495 60 : }
496 :
497 60 : FD_FN_PURE static inline ulong fd_vm_mem_ld_4( ulong haddr ) {
498 60 : uint t;
499 60 : memcpy( &t, (void const *)haddr, sizeof(uint) );
500 60 : return (ulong)t;
501 60 : }
502 :
503 42 : FD_FN_PURE static inline ulong fd_vm_mem_ld_8( ulong haddr ) {
504 42 : ulong t;
505 42 : memcpy( &t, (void const *)haddr, sizeof(ulong) );
506 42 : return t;
507 42 : }
508 :
509 6 : static inline void fd_vm_mem_st_1( ulong haddr, uchar val ) {
510 6 : *(uchar *)haddr = val;
511 6 : }
512 :
513 : static inline void fd_vm_mem_st_2( ulong haddr,
514 6 : ushort val ) {
515 6 : memcpy( (void *)haddr, &val, sizeof(ushort) );
516 6 : }
517 :
518 : static inline void fd_vm_mem_st_4( ulong haddr,
519 6 : uint val ) {
520 6 : memcpy( (void *)haddr, &val, sizeof(uint) );
521 6 : }
522 :
523 : static inline void fd_vm_mem_st_8( ulong haddr,
524 6 : ulong val ) {
525 6 : memcpy( (void *)haddr, &val, sizeof(ulong) );
526 6 : }
527 :
528 : FD_PROTOTYPES_END
529 :
530 : #endif /* HEADER_fd_src_flamenco_vm_fd_vm_private_h */
|