LCOV - code coverage report
Current view: top level - flamenco/vm - fd_vm_private.h (source / functions) Hit Total Coverage
Test: cov.lcov Lines: 144 204 70.6 %
Date: 2025-10-23 04:44:50 Functions: 31 598 5.2 %

          Line data    Source code
       1             : #ifndef HEADER_fd_src_flamenco_vm_fd_vm_private_h
       2             : #define HEADER_fd_src_flamenco_vm_fd_vm_private_h
       3             : 
       4             : #include "fd_vm.h"
       5             : 
       6             : #include "../../ballet/sbpf/fd_sbpf_instr.h"
       7             : #include "../../ballet/sbpf/fd_sbpf_opcodes.h"
       8             : #include "../../ballet/murmur3/fd_murmur3.h"
       9             : #include "../runtime/context/fd_exec_txn_ctx.h"
      10             : #include "../runtime/fd_runtime_const.h"
      11             : #include "../features/fd_features.h"
      12             : #include "fd_vm_base.h"
      13             : 
      14             : /* FD_VM_ALIGN_RUST_{} define the alignments for relevant rust types.
      15             :    Alignments are derived with std::mem::align_of::<T>() and are enforced
      16             :    by the VM (with the exception of v1 loader).
      17             : 
      18             :    In our implementation, when calling FD_VM_MEM_HADDR_ST / FD_VM_MEM_HADDR_LD,
      19             :    we need to make sure we're passing the correct alignment based on the Rust
      20             :    type in the corresponding mapping in Agave.
      21             : 
      22             :    FD_VM_ALIGN_RUST_{} has been generated with this Rust code:
      23             :    ```rust
      24             :       pub type Epoch = u64;
      25             :       pub struct Pubkey(pub [u8; 32]);
      26             :       pub struct AccountMeta {
      27             :           pub lamports: u64,
      28             :           pub rent_epoch: Epoch,
      29             :           pub owner: Pubkey,
      30             :           pub executable: bool,
      31             :       }
      32             : 
      33             :       pub struct PodScalar(pub [u8; 32]);
      34             : 
      35             :       fn main() {
      36             :           println!("u8: {}", std::mem::align_of::<u8>());
      37             :           println!("u32: {}", std::mem::align_of::<u32>());
      38             :           println!("u64: {}", std::mem::align_of::<u64>());
      39             :           println!("u128: {}", std::mem::align_of::<u128>());
      40             :           println!("&[u8]: {}", std::mem::align_of::<&[u8]>());
      41             :           println!("AccountMeta: {}", std::mem::align_of::<AccountMeta>());
      42             :           println!("PodScalar: {}", std::mem::align_of::<PodScalar>());
      43             :           println!("Pubkey: {}", std::mem::align_of::<Pubkey>());
      44             :       }
      45             :     ``` */
      46             : 
      47          93 : #define FD_VM_ALIGN_RUST_U8                       (1UL)
      48             : #define FD_VM_ALIGN_RUST_U32                      (4UL)
      49          15 : #define FD_VM_ALIGN_RUST_I32                      (4UL)
      50             : #define FD_VM_ALIGN_RUST_U64                      (8UL)
      51             : #define FD_VM_ALIGN_RUST_U128                    (16UL)
      52             : #define FD_VM_ALIGN_RUST_SLICE_U8_REF             (8UL)
      53          18 : #define FD_VM_ALIGN_RUST_POD_U8_ARRAY             (1UL)
      54           0 : #define FD_VM_ALIGN_RUST_PUBKEY                   (1UL)
      55           0 : #define FD_VM_ALIGN_RUST_SYSVAR_CLOCK             (8UL)
      56           0 : #define FD_VM_ALIGN_RUST_SYSVAR_EPOCH_SCHEDULE    (8UL)
      57           0 : #define FD_VM_ALIGN_RUST_SYSVAR_RENT              (8UL)
      58           0 : #define FD_VM_ALIGN_RUST_SYSVAR_LAST_RESTART_SLOT (8UL)
      59             : #define FD_VM_ALIGN_RUST_SYSVAR_EPOCH_REWARDS    (16UL)
      60             : #define FD_VM_ALIGN_RUST_STABLE_INSTRUCTION       (8UL)
      61             : 
      62             : /* fd_vm_vec_t is the in-memory representation of a vector descriptor.
      63             :    Equal in layout to the Rust slice header &[_] and various vector
      64             :    types in the C version of the syscall API. */
      65             : /* FIXME: WHEN IS VADDR NULL AND/OR SZ 0 OKAY? */
      66             : /* FIXME: MOVE FD_VM_RUST_VEC_T FROM SYSCALL/FD_VM_CPI.H HERE TOO? */
      67             : 
      68             : #define FD_VM_VEC_ALIGN FD_VM_ALIGN_RUST_SLICE_U8_REF
      69             : #define FD_VM_VEC_SIZE  (16UL)
      70             : 
      71             : struct __attribute__((packed)) fd_vm_vec {
      72             :   ulong addr; /* FIXME: NAME -> VADDR */
      73             :   ulong len;  /* FIXME: NAME -> SZ */
      74             : };
      75             : 
      76             : typedef struct fd_vm_vec fd_vm_vec_t;
      77             : 
      78             : FD_STATIC_ASSERT( sizeof(fd_vm_vec_t)==FD_VM_VEC_SIZE, fd_vm_vec size mismatch );
      79             : 
      80             : /* SBPF version and features
      81             :    https://github.com/anza-xyz/sbpf/blob/v0.12.2/src/program.rs#L28
      82             :    Note: SIMDs enable or disable features, e.g. BPF instructions.
      83             :    If we have macros with names ENABLE vs DISABLE, we have the advantage that
      84             :    the condition is always pretty clear: sbpf_version <= activation_version,
      85             :    but the disadvantage of inconsistent names.
      86             :    Viceversa, calling everything ENABLE has the risk to invert a <= with a >=
      87             :    and create a huge mess.
      88             :    We define both, so hopefully it's foolproof. */
      89             : 
      90             : #define FD_VM_SBPF_REJECT_RODATA_STACK_OVERLAP(v)  ( v != FD_SBPF_V0 )
      91             : #define FD_VM_SBPF_ENABLE_ELF_VADDR(v)             ( v != FD_SBPF_V0 )
      92             : /* SIMD-0166 */
      93   805477215 : #define FD_VM_SBPF_DYNAMIC_STACK_FRAMES(v)         ( v >= FD_SBPF_V1 )
      94             : /* SIMD-0173 */
      95        7878 : #define FD_VM_SBPF_CALLX_USES_SRC_REG(v)           ( v >= FD_SBPF_V2 )
      96             : #define FD_VM_SBPF_DISABLE_LDDW(v)                 ( v >= FD_SBPF_V2 )
      97       77988 : #define FD_VM_SBPF_ENABLE_LDDW(v)                  ( v <  FD_SBPF_V2 )
      98             : #define FD_VM_SBPF_DISABLE_LE(v)                   ( v >= FD_SBPF_V2 )
      99       38994 : #define FD_VM_SBPF_ENABLE_LE(v)                    ( v <  FD_SBPF_V2 )
     100      935856 : #define FD_VM_SBPF_MOVE_MEMORY_IX_CLASSES(v)       ( v >= FD_SBPF_V2 )
     101             : /* SIMD-0174 */
     102     1052838 : #define FD_VM_SBPF_ENABLE_PQR(v)                   ( v >= FD_SBPF_V2 )
     103             : #define FD_VM_SBPF_DISABLE_NEG(v)                  ( v >= FD_SBPF_V2 )
     104       38994 : #define FD_VM_SBPF_ENABLE_NEG(v)                   ( v <  FD_SBPF_V2 )
     105       62232 : #define FD_VM_SBPF_SWAP_SUB_REG_IMM_OPERANDS(v)    ( v >= FD_SBPF_V2 )
     106      124464 : #define FD_VM_SBPF_EXPLICIT_SIGN_EXT(v)            ( v >= FD_SBPF_V2 )
     107             : /* SIMD-0178 + SIMD-0179 */
     108      155976 : #define FD_VM_SBPF_STATIC_SYSCALLS(v)              ( v >= FD_SBPF_V3 )
     109             : /* SIMD-0189 */
     110             : #define FD_VM_SBPF_ENABLE_LOWER_BYTECODE_VADDR(v)  ( v >= FD_SBPF_V3 )
     111             : /* enable_strict_elf_headers is defined in fd_sbpf_loader.h because it's needed
     112             :    by the ELF loader, not really by the VM
     113             :    #define FD_VM_SBPF_ENABLE_STRICTER_ELF_HEADERS(v)  ( v >= FD_SBPF_V3 ) */
     114             : 
     115         789 : #define FD_VM_OFFSET_MASK (0xffffffffUL)
     116             : 
     117             : /* https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L32 */
     118           0 : #define FD_MAX_ACCOUNT_DATA_GROWTH_PER_TRANSACTION (FD_RUNTIME_ACC_SZ_MAX * 2UL)
     119             : 
     120             : FD_PROTOTYPES_BEGIN
     121             : 
     122             : /* Error logging handholding assertions */
     123             : 
     124             : #ifdef FD_RUNTIME_ERR_HANDHOLDING
     125             : /* Asserts that the error and error kind are populated (non-zero) */
     126             : #define FD_VM_TEST_ERR_EXISTS( vm )                                       \
     127             :     FD_TEST( vm->instr_ctx->txn_ctx->exec_err );                          \
     128             :     FD_TEST( vm->instr_ctx->txn_ctx->exec_err_kind )
     129             : 
     130             : /* Used prior to a FD_VM_ERR_FOR_LOG_INSTR call to deliberately
     131             :    bypass overwrite handholding checks.
     132             :    Only use this if you know what you're doing. */
     133             : #define FD_VM_PREPARE_ERR_OVERWRITE( vm )                                 \
     134             :    vm->instr_ctx->txn_ctx->exec_err = 0;                                  \
     135             :    vm->instr_ctx->txn_ctx->exec_err_kind = 0
     136             : 
     137             : /* Asserts that the error and error kind are not populated (zero) */
     138             : #define FD_VM_TEST_ERR_OVERWRITE( vm )                                    \
     139             :     FD_TEST( !vm->instr_ctx->txn_ctx->exec_err );                         \
     140             :     FD_TEST( !vm->instr_ctx->txn_ctx->exec_err_kind )
     141             : #else
     142           0 : #define FD_VM_TEST_ERR_EXISTS( vm ) ( ( void )0 )
     143           0 : #define FD_VM_PREPARE_ERR_OVERWRITE( vm ) ( ( void )0 )
     144          81 : #define FD_VM_TEST_ERR_OVERWRITE( vm ) ( ( void )0 )
     145             : #endif
     146             : 
     147             : /* Log error within the instr_ctx to match Agave/Rust error. */
     148             : 
     149          57 : #define FD_VM_ERR_FOR_LOG_EBPF( vm, err ) (__extension__({                \
     150          57 :     FD_VM_TEST_ERR_OVERWRITE( vm );                                       \
     151          57 :     vm->instr_ctx->txn_ctx->exec_err = err;                               \
     152          57 :     vm->instr_ctx->txn_ctx->exec_err_kind = FD_EXECUTOR_ERR_KIND_EBPF;    \
     153          57 :   }))
     154             : 
     155          24 : #define FD_VM_ERR_FOR_LOG_SYSCALL( vm, err ) (__extension__({             \
     156          24 :     FD_VM_TEST_ERR_OVERWRITE( vm );                                       \
     157          24 :     vm->instr_ctx->txn_ctx->exec_err = err;                               \
     158          24 :     vm->instr_ctx->txn_ctx->exec_err_kind = FD_EXECUTOR_ERR_KIND_SYSCALL; \
     159          24 :   }))
     160             : 
     161           0 : #define FD_VM_ERR_FOR_LOG_INSTR( vm, err ) (__extension__({               \
     162           0 :     FD_VM_TEST_ERR_OVERWRITE( vm );                                       \
     163           0 :     vm->instr_ctx->txn_ctx->exec_err = err;                               \
     164           0 :     vm->instr_ctx->txn_ctx->exec_err_kind = FD_EXECUTOR_ERR_KIND_INSTR;   \
     165           0 :   }))
     166             : 
     167         747 : #define FD_VADDR_TO_REGION( _vaddr ) fd_ulong_min( (_vaddr) >> FD_VM_MEM_MAP_REGION_VIRT_ADDR_BITS, FD_VM_HIGH_REGION )
     168             : 
     169             : /* fd_vm_instr APIs ***************************************************/
     170             : 
     171             : /* FIXME: MIGRATE FD_SBPF_INSTR_T STUFF TO THIS API */
     172             : 
     173             : /* fd_vm_instr returns the SBPF instruction word corresponding to the
     174             :    given fields. */
     175             : 
     176             : FD_FN_CONST static inline ulong
     177             : fd_vm_instr( ulong opcode, /* Assumed valid */
     178             :              ulong dst,    /* Assumed in [0,FD_VM_REG_CNT) */
     179             :              ulong src,    /* Assumed in [0,FD_VM_REG_CNT) */
     180             :              short offset,
     181       16587 :              uint  imm ) {
     182       16587 :   return opcode | (dst<<8) | (src<<12) | (((ulong)(ushort)offset)<<16) | (((ulong)imm)<<32);
     183       16587 : }
     184             : 
     185             : /* fd_vm_instr_* return the SBPF instruction field for the given word.
     186             :    fd_vm_instr_{normal,mem}_* only apply to {normal,mem} opclass
     187             :    instructions. */
     188             : 
     189      381843 : FD_FN_CONST static inline ulong fd_vm_instr_opcode( ulong instr ) { return   instr      & 255UL;       } /* In [0,256) */
     190      381843 : FD_FN_CONST static inline ulong fd_vm_instr_dst   ( ulong instr ) { return ((instr>> 8) &  15UL);      } /* In [0,16)  */
     191      381843 : FD_FN_CONST static inline ulong fd_vm_instr_src   ( ulong instr ) { return ((instr>>12) &  15UL);      } /* In [0,16)  */
     192      381843 : FD_FN_CONST static inline ulong fd_vm_instr_offset( ulong instr ) { return (ulong)(long)(short)(ushort)(instr>>16); }
     193      381960 : FD_FN_CONST static inline uint  fd_vm_instr_imm   ( ulong instr ) { return (uint)(instr>>32);          }
     194             : 
     195           0 : FD_FN_CONST static inline ulong fd_vm_instr_opclass       ( ulong instr ) { return  instr      & 7UL; } /* In [0,8)  */
     196           0 : FD_FN_CONST static inline ulong fd_vm_instr_normal_opsrc  ( ulong instr ) { return (instr>>3) &  1UL; } /* In [0,2)  */
     197           0 : FD_FN_CONST static inline ulong fd_vm_instr_normal_opmode ( ulong instr ) { return (instr>>4) & 15UL; } /* In [0,16) */
     198           0 : FD_FN_CONST static inline ulong fd_vm_instr_mem_opsize    ( ulong instr ) { return (instr>>3) &  3UL; } /* In [0,4)  */
     199           0 : FD_FN_CONST static inline ulong fd_vm_instr_mem_opaddrmode( ulong instr ) { return (instr>>5) &  7UL; } /* In [0,16) */
     200             : 
     201             : /* fd_vm_mem API ******************************************************/
     202             : 
     203             : /* fd_vm_mem APIs support the fast mapping of virtual address ranges to
     204             :    host address ranges.  Since the SBPF virtual address space consists
     205             :    of 4 consecutive 4GiB regions and the mapable size of each region is
     206             :    less than 4 GiB (as implied by FD_VM_MEM_MAP_REGION_SZ==2^32-1 and
     207             :    that Solana protocol limits are much smaller still), it is impossible
     208             :    for a valid virtual address range to span multiple regions. */
     209             : 
     210             : /* fd_vm_mem_cfg configures the vm's tlb arrays.  Assumes vm is valid
     211             :    and vm already has configured the rodata, stack, heap and input
     212             :    regions.  Returns vm. */
     213             : 
     214             : static inline fd_vm_t *
     215        8064 : fd_vm_mem_cfg( fd_vm_t * vm ) {
     216        8064 :   vm->region_haddr[0] = 0UL;                                vm->region_ld_sz[0]                  = (uint)0UL;             vm->region_st_sz[0]                  = (uint)0UL;
     217        8064 :   vm->region_haddr[FD_VM_PROG_REGION]  = (ulong)vm->rodata; vm->region_ld_sz[FD_VM_PROG_REGION]  = (uint)vm->rodata_sz;   vm->region_st_sz[FD_VM_PROG_REGION]  = (uint)0UL;
     218        8064 :   vm->region_haddr[FD_VM_STACK_REGION] = (ulong)vm->stack;  vm->region_ld_sz[FD_VM_STACK_REGION] = (uint)FD_VM_STACK_MAX; vm->region_st_sz[FD_VM_STACK_REGION] = (uint)FD_VM_STACK_MAX;
     219        8064 :   vm->region_haddr[FD_VM_HEAP_REGION]  = (ulong)vm->heap;   vm->region_ld_sz[FD_VM_HEAP_REGION]  = (uint)vm->heap_max;    vm->region_st_sz[FD_VM_HEAP_REGION]  = (uint)vm->heap_max;
     220        8064 :   vm->region_haddr[5]                  = 0UL;               vm->region_ld_sz[5]                  = (uint)0UL;             vm->region_st_sz[5]                  = (uint)0UL;
     221        8064 :   if( vm->direct_mapping || !vm->input_mem_regions_cnt ) {
     222             :     /* When direct mapping is enabled, we don't use these fields because
     223             :        the load and stores are fragmented. */
     224         408 :     vm->region_haddr[FD_VM_INPUT_REGION] = 0UL;
     225         408 :     vm->region_ld_sz[FD_VM_INPUT_REGION] = 0U;
     226         408 :     vm->region_st_sz[FD_VM_INPUT_REGION] = 0U;
     227        7656 :   } else {
     228        7656 :     vm->region_haddr[FD_VM_INPUT_REGION] = vm->input_mem_regions[0].haddr;
     229        7656 :     vm->region_ld_sz[FD_VM_INPUT_REGION] = vm->input_mem_regions[0].region_sz;
     230        7656 :     vm->region_st_sz[FD_VM_INPUT_REGION] = vm->input_mem_regions[0].region_sz;
     231        7656 :   }
     232        8064 :   return vm;
     233        8064 : }
     234             : 
     235             : /* Simplified version of Agave's `generate_access_violation()` function
     236             :    that simply returns either FD_VM_ERR_EBPF_ACCESS_VIOLATION or
     237             :    FD_VM_ERR_EBPF_STACK_ACCESS_VIOLATION. This has no consensus
     238             :    effects and is purely for logging purposes for fuzzing. Returns
     239             :    FD_VM_ERR_EBPF_STACK_ACCESS_VIOLATION if the provided vaddr is in the
     240             :    stack (0x200000000) and FD_VM_ERR_EBPF_ACCESS_VIOLATION otherwise.
     241             : 
     242             :    https://github.com/anza-xyz/sbpf/blob/v0.11.1/src/memory_region.rs#L834-L869 */
     243             : static FD_FN_PURE inline int
     244         255 : fd_vm_generate_access_violation( ulong vaddr, ulong sbpf_version ) {
     245             :   /* rel_offset can be negative because there is an edge case where the
     246             :      first "frame" right before the stack region should also throw a
     247             :      stack access violation. */
     248         255 :   long rel_offset = fd_long_sat_sub( (long)vaddr, (long)FD_VM_MEM_MAP_STACK_REGION_START );
     249         255 :   long stack_frame = rel_offset / (long)FD_VM_STACK_FRAME_SZ;
     250         255 :   if( !fd_sbpf_dynamic_stack_frames_enabled( sbpf_version ) &&
     251         255 :       stack_frame>=-1L && stack_frame<=(long)FD_VM_MAX_CALL_DEPTH ) {
     252           0 :     return FD_VM_ERR_EBPF_STACK_ACCESS_VIOLATION;
     253           0 :   }
     254         255 :   return FD_VM_ERR_EBPF_ACCESS_VIOLATION;
     255         255 : }
     256             : 
     257             : /* fd_vm_mem_haddr translates the vaddr range [vaddr,vaddr+sz) (in
     258             :    infinite precision math) into the non-wrapping haddr range
     259             :    [haddr,haddr+sz).  On success, returns haddr and every byte in the
     260             :    haddr range is a valid address.  On failure, returns sentinel and
     261             :    there was at least one byte in the virtual address range that did not
     262             :    have a corresponding byte in the host address range.
     263             : 
     264             :    IMPORTANT SAFETY TIP!  When sz==0, the return value currently is
     265             :    arbitrary.  This is often fine as there should be no
     266             :    actual accesses to a sz==0 region.  However, this also means that
     267             :    testing return for sentinel is insufficient to tell if mapping
     268             :    failed.  That is, assuming sentinel is a location that could never
     269             :    happen on success:
     270             : 
     271             :      sz!=0 and ret!=sentinel -> success
     272             :      sz!=0 and ret==sentinel -> failure
     273             :      sz==0 -> ignore ret, application specific handling
     274             : 
     275             :    With ~O(2) extra fast branchless instructions, the below could be
     276             :    tweaked in the sz==0 case to return NULL or return a non-NULL
     277             :    sentinel value.  What is most optimal practically depends on how
     278             :    empty ranges and NULL vaddr handling is defined in the application.
     279             : 
     280             :    Requires ~O(10) fast branchless assembly instructions with 2 L1 cache
     281             :    hit loads and pretty good ILP.
     282             : 
     283             :    fd_vm_mem_haddr_fast is when the vaddr is for use when it is already
     284             :    known that the vaddr region has a valid mapping.
     285             : 
     286             :    These assumptions don't hold if direct mapping is enabled since input
     287             :    region lookups become O(log(n)). */
     288             : 
     289             : 
     290             : /* fd_vm_get_input_mem_region_idx returns the index into the input memory
     291             :    region array with the largest region offset that is <= the offset that
     292             :    is passed in.  This function makes NO guarantees about the input being
     293             :    a valid input region offset; the caller is responsible for safely handling
     294             :    it. */
     295             : static inline ulong
     296         348 : fd_vm_get_input_mem_region_idx( fd_vm_t const * vm, ulong offset ) {
     297         348 :   uint left  = 0U;
     298         348 :   uint right = vm->input_mem_regions_cnt - 1U;
     299         348 :   uint mid   = 0U;
     300             : 
     301         576 :   while( left<right ) {
     302         228 :     mid = (left+right) / 2U;
     303         228 :     if( offset>=vm->input_mem_regions[ mid ].vaddr_offset+vm->input_mem_regions[ mid ].address_space_reserved ) {
     304          51 :       left = mid + 1U;
     305         177 :     } else {
     306         177 :       right = mid;
     307         177 :     }
     308         228 :   }
     309         348 :   return left;
     310         348 : }
     311             : 
     312             : /* If the region is an account, handle the resizing logic. This logic
     313             :    corresponds to
     314             :    solana_transaction_context::TransactionContext::access_violation_handler
     315             : 
     316             :    https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L510-L581 */
     317             : static inline void
     318             : fd_vm_handle_input_mem_region_oob( fd_vm_t const * vm,
     319             :                                    ulong           offset,
     320             :                                    ulong           sz,
     321             :                                    ulong           region_idx,
     322         120 :                                    uchar           write ) {
     323             :   /* If stricter_abi_and_runtime_constraints is not enabled, we don't need to
     324             :      do anything */
     325         120 :   if( FD_UNLIKELY( !vm->stricter_abi_and_runtime_constraints ) ) {
     326         102 :     return;
     327         102 :   }
     328             : 
     329             :   /* If the access is not a write, we don't need to do anything
     330             :      https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L523-L525 */
     331          18 :   if( FD_UNLIKELY( !write ) ) {
     332           0 :     return;
     333           0 :   }
     334             : 
     335          18 :   fd_vm_input_region_t * region = &vm->input_mem_regions[ region_idx ];
     336             :   /* If the region is not writable, we don't need to do anything
     337             :      https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L526-L529 */
     338          18 :   if( FD_UNLIKELY( !region->is_writable ) ) {
     339           0 :     return;
     340           0 :   }
     341             : 
     342             :   /* Calculate the requested length
     343             :      https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L532-L535 */
     344          18 :   ulong requested_len = fd_ulong_sat_sub( fd_ulong_sat_add( offset, sz ), region->vaddr_offset );
     345          18 :   if( FD_UNLIKELY( requested_len > region->address_space_reserved ) ) {
     346          18 :     return;
     347          18 :   }
     348             : 
     349             :   /* Calculate the remaining allowed growth
     350             :      https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L549-L551 */
     351           0 :   ulong remaining_allowed_growth = fd_ulong_sat_sub(
     352           0 :     FD_MAX_ACCOUNT_DATA_GROWTH_PER_TRANSACTION,
     353           0 :     vm->instr_ctx->txn_ctx->accounts_resize_delta );
     354             : 
     355             :   /* If the requested length is greater than the size of the region,
     356             :      resize the region
     357             :      https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L553-L571 */
     358           0 :   if( FD_UNLIKELY( requested_len > region->region_sz ) ) {
     359             :     /* Calculate the new region size
     360             :        https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L558-L560 */
     361           0 :     ulong new_region_sz = fd_ulong_min(
     362           0 :       fd_ulong_min( region->address_space_reserved, FD_RUNTIME_ACC_SZ_MAX ),
     363           0 :       fd_ulong_sat_add( region->region_sz, remaining_allowed_growth ) );
     364             : 
     365             :     /* Resize the account and the region
     366             :        https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L569-L570 */
     367           0 :     if( FD_UNLIKELY( new_region_sz > region->region_sz ) ) {
     368           0 :       vm->instr_ctx->txn_ctx->accounts_resize_delta = fd_ulong_sat_sub(
     369           0 :         fd_ulong_sat_add( vm->instr_ctx->txn_ctx->accounts_resize_delta, new_region_sz ),
     370           0 :         region->region_sz );
     371             : 
     372           0 :       fd_txn_account_resize( vm->acc_region_metas[ region->acc_region_meta_idx ].acct, requested_len );
     373           0 :       region->region_sz = (uint)new_region_sz;
     374           0 :     }
     375           0 :   }
     376           0 : }
     377             : 
     378             : /* fd_vm_find_input_mem_region returns the translated haddr for a given
     379             :    offset into the input region.  If an offset/sz is invalid or if an
     380             :    illegal write is performed, the sentinel value is returned. If the offset
     381             :    provided is too large, it will choose the upper-most region as the
     382             :    region_idx. However, it will get caught for being too large of an access
     383             :    in the multi-region checks. */
     384             : static inline ulong
     385             : fd_vm_find_input_mem_region( fd_vm_t const * vm,
     386             :                              ulong           offset,
     387             :                              ulong           sz,
     388             :                              uchar           write,
     389         348 :                              ulong           sentinel ) {
     390         348 :   if( FD_UNLIKELY( vm->input_mem_regions_cnt==0 ) ) {
     391           0 :     return sentinel; /* Access is too large */
     392           0 :   }
     393             : 
     394             :   /* Binary search to find the correct memory region.  If direct mapping is not
     395             :      enabled, then there is only 1 memory region which spans the input region. */
     396         348 :   ulong region_idx = fd_vm_get_input_mem_region_idx( vm, offset );
     397         348 :   if( FD_UNLIKELY( region_idx>=vm->input_mem_regions_cnt ) ) {
     398           0 :     return sentinel; /* Region not found */
     399           0 :   }
     400             : 
     401         348 :   ulong bytes_in_region = fd_ulong_sat_sub( vm->input_mem_regions[ region_idx ].region_sz,
     402         348 :                                             fd_ulong_sat_sub( offset, vm->input_mem_regions[ region_idx ].vaddr_offset ) );
     403             : 
     404             :   /* If the access is out of bounds, invoke the callback to handle the out of bounds access.
     405             :      This potentially resizes the region if necessary. */
     406         348 :   if( FD_UNLIKELY( sz>bytes_in_region ) ) {
     407         120 :     fd_vm_handle_input_mem_region_oob( vm, offset, sz, region_idx, write );
     408         120 :   }
     409             : 
     410             :   /* After potentially resizing, re-check the bounds */
     411         348 :   bytes_in_region = fd_ulong_sat_sub( vm->input_mem_regions[ region_idx ].region_sz,
     412         348 :                                       fd_ulong_sat_sub( offset, vm->input_mem_regions[ region_idx ].vaddr_offset ) );
     413             :   /* If the access is still out of bounds, return the sentinel */
     414         348 :   if( FD_UNLIKELY( sz>bytes_in_region ) ) {
     415         120 :     return sentinel;
     416         120 :   }
     417             : 
     418         228 :   if( FD_UNLIKELY( write && vm->input_mem_regions[ region_idx ].is_writable==0U ) ) {
     419           0 :     return sentinel; /* Illegal write */
     420           0 :   }
     421             : 
     422         228 :   ulong start_region_idx = region_idx;
     423             : 
     424         228 :   ulong adjusted_haddr = vm->input_mem_regions[ start_region_idx ].haddr + offset - vm->input_mem_regions[ start_region_idx ].vaddr_offset;
     425         228 :   return adjusted_haddr;
     426         228 : }
     427             : 
     428             : 
     429             : static inline ulong
     430             : fd_vm_mem_haddr( fd_vm_t const * vm,
     431             :                  ulong           vaddr,
     432             :                  ulong           sz,
     433             :                  ulong const *   vm_region_haddr, /* indexed [0,6) */
     434             :                  uint  const *   vm_region_sz,    /* indexed [0,6) */
     435             :                  uchar           write,           /* 1 if the access is a write, 0 if it is a read */
     436         747 :                  ulong           sentinel ) {
     437         747 :   ulong region = FD_VADDR_TO_REGION( vaddr );
     438         747 :   ulong offset = vaddr & FD_VM_OFFSET_MASK;
     439             : 
     440             :   /* Stack memory regions have 4kB unmapped "gaps" in-between each frame, which only exist if...
     441             :           - dynamic stack frames are not enabled (!(SBPF version >= SBPF_V1))
     442             :      https://github.com/anza-xyz/agave/blob/v2.2.12/programs/bpf_loader/src/lib.rs#L344-L351
     443             :     */
     444         747 :   if( FD_UNLIKELY( region==FD_VM_STACK_REGION &&
     445         747 :                    !fd_sbpf_dynamic_stack_frames_enabled( vm->sbpf_version ) ) ) {
     446             :     /* If an access starts in a gap region, that is an access violation */
     447           0 :     if( FD_UNLIKELY( !!(vaddr & 0x1000) ) ) {
     448           0 :       return sentinel;
     449           0 :     }
     450             : 
     451             :     /* To account for the fact that we have gaps in the virtual address space but not in the
     452             :        physical address space, we need to subtract from the offset the size of all the virtual
     453             :        gap frames underneath it.
     454             : 
     455             :        https://github.com/solana-labs/rbpf/blob/b503a1867a9cfa13f93b4d99679a17fe219831de/src/memory_region.rs#L147-L149 */
     456           0 :     ulong gap_mask = 0xFFFFFFFFFFFFF000;
     457           0 :     offset = ( ( offset & gap_mask ) >> 1 ) | ( offset & ~gap_mask );
     458           0 :   }
     459             : 
     460         747 :   ulong region_sz = (ulong)vm_region_sz[ region ];
     461         747 :   ulong sz_max    = region_sz - fd_ulong_min( offset, region_sz );
     462             : 
     463             :   /* If the region is an account, handle the resizing logic. This logic corresponds to
     464             :      solana_transaction_context::TransactionContext::access_violation_handler
     465             : 
     466             :      https://github.com/anza-xyz/agave/blob/v3.0.1/transaction-context/src/lib.rs#L510-L581 */
     467         747 :   if( region==FD_VM_INPUT_REGION ) {
     468         348 :     return fd_vm_find_input_mem_region( vm, offset, sz, write, sentinel );
     469         348 :   }
     470             : 
     471             : # ifdef FD_VM_INTERP_MEM_TRACING_ENABLED
     472             :   if ( FD_LIKELY( sz<=sz_max ) ) {
     473             :     fd_vm_trace_event_mem( vm->trace, write, vaddr, sz, vm_region_haddr[ region ] + offset );
     474             :   }
     475             : # endif
     476         399 :   return fd_ulong_if( sz<=sz_max, vm_region_haddr[ region ] + offset, sentinel );
     477         747 : }
     478             : 
     479             : static inline ulong
     480             : fd_vm_mem_haddr_fast( fd_vm_t const * vm,
     481             :                       ulong           vaddr,
     482           0 :                       ulong   const * vm_region_haddr ) { /* indexed [0,6) */
     483           0 :   ulong region   = FD_VADDR_TO_REGION( vaddr );
     484           0 :   ulong offset   = vaddr & FD_VM_OFFSET_MASK;
     485           0 :   if( FD_UNLIKELY( region==FD_VM_INPUT_REGION ) ) {
     486           0 :     return fd_vm_find_input_mem_region( vm, offset, 1UL, 0, 0UL );
     487           0 :   }
     488           0 :   return vm_region_haddr[ region ] + offset;
     489           0 : }
     490             : 
     491          54 : FD_FN_PURE static inline ulong fd_vm_mem_ld_1( ulong haddr ) {
     492          54 :   return (ulong)*(uchar const *)haddr;
     493          54 : }
     494             : 
     495          60 : FD_FN_PURE static inline ulong fd_vm_mem_ld_2( ulong haddr ) {
     496          60 :   ushort t;
     497          60 :   memcpy( &t, (void const *)haddr, sizeof(ushort) );
     498          60 :   return (ulong)t;
     499          60 : }
     500             : 
     501          60 : FD_FN_PURE static inline ulong fd_vm_mem_ld_4( ulong haddr ) {
     502          60 :   uint t;
     503          60 :   memcpy( &t, (void const *)haddr, sizeof(uint) );
     504          60 :   return (ulong)t;
     505          60 : }
     506             : 
     507          42 : FD_FN_PURE static inline ulong fd_vm_mem_ld_8( ulong haddr ) {
     508          42 :   ulong t;
     509          42 :   memcpy( &t, (void const *)haddr, sizeof(ulong) );
     510          42 :   return t;
     511          42 : }
     512             : 
     513           6 : static inline void fd_vm_mem_st_1( ulong haddr, uchar val ) {
     514           6 :   *(uchar *)haddr = val;
     515           6 : }
     516             : 
     517             : static inline void fd_vm_mem_st_2( ulong  haddr,
     518           6 :                                    ushort val ) {
     519           6 :   memcpy( (void *)haddr, &val, sizeof(ushort) );
     520           6 : }
     521             : 
     522             : static inline void fd_vm_mem_st_4( ulong haddr,
     523           6 :                                    uint  val ) {
     524           6 :   memcpy( (void *)haddr, &val, sizeof(uint) );
     525           6 : }
     526             : 
     527             : static inline void fd_vm_mem_st_8( ulong haddr,
     528           6 :                                    ulong val ) {
     529           6 :   memcpy( (void *)haddr, &val, sizeof(ulong) );
     530           6 : }
     531             : 
     532             : FD_PROTOTYPES_END
     533             : 
     534             : #endif /* HEADER_fd_src_flamenco_vm_fd_vm_private_h */

Generated by: LCOV version 1.14