Line data Source code
1 : #ifndef HEADER_fd_src_flamenco_vm_syscall_fd_vm_syscall_macros_h
2 : #define HEADER_fd_src_flamenco_vm_syscall_fd_vm_syscall_macros_h
3 : #include "../fd_vm_private.h"
4 :
5 : /* fd_vm_cu API *******************************************************/
6 :
7 : /* FD_VM_CU_UPDATE charges the vm cost compute units.
8 :
9 : If the vm does not have more than cost cu available, this will cause
10 : the caller to zero out the vm->cu and return with FD_VM_SYSCALL_ERR_COMPUTE_BUDGET_EXCEEDED.
11 : This macro is robust.
12 : This is meant to be used by syscall implementations and strictly
13 : conforms with the vm-syscall ABI interface.
14 :
15 : Note: in Agave a syscall can return success leaving 0 available CUs.
16 : The instruction will fail at the next instruction (e.g., exit).
17 : To reproduce the same behavior, we do not return FD_VM_SYSCALL_ERR_COMPUTE_BUDGET_EXCEEDED
18 : when cu == 0.
19 :
20 : FD_VM_CU_MEM_UPDATE charges the vm the equivalent of sz bytes of
21 : compute units. Behavior is otherwise identical to FD_VM_CU_UPDATE.
22 : FIXME: THIS API PROBABLY BELONGS IN SYSCALL CPI LAND. */
23 :
24 180 : #define FD_VM_CU_UPDATE( vm, cost ) (__extension__({ \
25 180 : fd_vm_t * _vm = (vm); \
26 180 : ulong _cost = (cost); \
27 180 : ulong _cu = _vm->cu; \
28 180 : if( FD_UNLIKELY( _cost>_cu ) ) { \
29 0 : _vm->cu = 0UL; \
30 0 : FD_VM_ERR_FOR_LOG_INSTR( vm, FD_EXECUTOR_INSTR_ERR_COMPUTE_BUDGET_EXCEEDED ); \
31 0 : return FD_VM_SYSCALL_ERR_COMPUTE_BUDGET_EXCEEDED; \
32 0 : } \
33 180 : _vm->cu = _cu - _cost; \
34 180 : }))
35 :
36 : /* https://github.com/anza-xyz/agave/blob/5263c9d61f3af060ac995956120bef11c1bbf182/programs/bpf_loader/src/syscalls/mem_ops.rs#L7 */
37 : #define FD_VM_CU_MEM_OP_UPDATE( vm, sz ) \
38 126 : FD_VM_CU_UPDATE( vm, fd_ulong_max( FD_VM_MEM_OP_BASE_COST, sz / FD_VM_CPI_BYTES_PER_UNIT ) )
39 :
40 :
41 : /* fd_vm_mem API *****************************************************/
42 :
43 : /* fd_vm_haddr_query is a struct that contains information about a vaddr, align, sz, and whether it is a slice.
44 : The translated haddr is written into the `haddr` field of the struct on success. This struct is primarily used
45 : by the FD_VM_TRANSLATE_MUT macro. See more details in the macro's documentation. */
46 : struct fd_vm_haddr_query {
47 : ulong vaddr;
48 : ulong align;
49 : ulong sz;
50 : uchar is_slice;
51 : void * haddr; /* out field */
52 : };
53 : typedef struct fd_vm_haddr_query fd_vm_haddr_query_t;
54 :
55 : /* FD_VM_MEM_HADDR_LD returns a read only pointer to the first byte
56 : in the host address space corresponding to vm's virtual address range
57 : [vaddr,vaddr+sz). If the vm has check_align enabled, the vaddr
58 : should be aligned to align and the returned pointer will be similarly
59 : aligned. Align is assumed to be a power of two <= 8 (FIXME: CHECK
60 : THIS LIMIT).
61 :
62 : If the virtual address range cannot be mapped to the host address
63 : space completely and/or (when applicable) vaddr is not appropriately
64 : aligned, this will cause the caller to return FD_VM_SYSCALL_ERR_SEGFAULT.
65 : This macro is robust. This is meant to be used by syscall
66 : implementations and strictly conforms with the vm-syscall ABI
67 : interface.
68 :
69 : FD_VM_MEM_HADDR_ST returns a read-write pointer but is otherwise
70 : identical to FD_VM_MEM_HADDR_LD.
71 :
72 : FD_VM_MEM_HADDR_LD_FAST and FD_VM_HADDR_ST_FAST are for use when the
73 : corresponding vaddr region it known to correctly resolve (e.g. a
74 : syscall has already done preflight checks on them).
75 :
76 : These macros intentionally don't support multi region loads/stores.
77 : The load/store macros are used by vm syscalls and mirror the use
78 : of translate_slice{_mut}. However, this check does not allow for
79 : multi region accesses. So if there is an attempt at a multi region
80 : translation, an error will be returned.
81 :
82 : FD_VM_MEM_HADDR_ST_UNCHECKED has all of the checks of a load or a
83 : store, but intentionally omits the is_writable checks for the
84 : input region that are done during memory translation.
85 :
86 : FD_VM_MEM_HADDR_ST_NO_SZ_CHECK does all of the checks of a load,
87 : except for a check on the validity of the size of a load. It only
88 : checks that the specific vaddr that is being translated is valid. */
89 :
90 180 : #define FD_VM_MEM_HADDR_LD( vm, vaddr, align, sz ) (__extension__({ \
91 180 : fd_vm_t * _vm = (vm); \
92 180 : ulong _vaddr = (vaddr); \
93 180 : ulong _haddr = fd_vm_mem_haddr( vm, _vaddr, (sz), _vm->region_haddr, _vm->region_ld_sz, 0, 0UL ); \
94 180 : int _sigbus = fd_vm_is_check_align_enabled( vm ) & (!fd_ulong_is_aligned( _haddr, (align) )); \
95 180 : if ( FD_UNLIKELY( sz > LONG_MAX ) ) { \
96 0 : FD_VM_ERR_FOR_LOG_SYSCALL( _vm, FD_VM_SYSCALL_ERR_INVALID_LENGTH ); \
97 0 : return FD_VM_SYSCALL_ERR_SEGFAULT; \
98 0 : } \
99 180 : if( FD_UNLIKELY( (!_haddr) ) ) { \
100 15 : _vm->segv_vaddr = _vaddr; \
101 15 : _vm->segv_access_len = (sz); \
102 15 : _vm->segv_access_type = FD_VM_ACCESS_TYPE_LD; \
103 15 : FD_VM_ERR_FOR_LOG_EBPF( _vm, fd_vm_generate_access_violation( _vaddr, _vm->sbpf_version ) ); \
104 15 : return FD_VM_SYSCALL_ERR_SEGFAULT; \
105 15 : } \
106 180 : if ( FD_UNLIKELY( _sigbus ) ) { \
107 0 : FD_VM_ERR_FOR_LOG_SYSCALL( _vm, FD_VM_SYSCALL_ERR_UNALIGNED_POINTER ); \
108 0 : return FD_VM_SYSCALL_ERR_SEGFAULT; \
109 0 : } \
110 165 : (void const *)_haddr; \
111 165 : }))
112 :
113 : #define FD_VM_MEM_HADDR_LD_UNCHECKED( vm, vaddr, align, sz ) (__extension__({ \
114 : fd_vm_t const * _vm = (vm); \
115 : ulong _vaddr = (vaddr); \
116 : ulong _haddr = fd_vm_mem_haddr( vm, _vaddr, (sz), _vm->region_haddr, _vm->region_ld_sz, 0, 0UL ); \
117 : (void const *)_haddr; \
118 : }))
119 :
120 :
121 : #define FD_VM_MEM_HADDR_LD_NO_SZ_CHECK( vm, vaddr, align ) (__extension__({ \
122 : FD_VM_MEM_HADDR_LD( vm, vaddr, align, 1UL ); \
123 : }))
124 :
125 : static inline void *
126 129 : FD_VM_MEM_HADDR_ST_( fd_vm_t *vm, ulong vaddr, ulong align, ulong sz, int *err ) {
127 129 : fd_vm_t * _vm = (vm);
128 129 : ulong _vaddr = (vaddr);
129 129 : ulong _haddr = fd_vm_mem_haddr( vm, _vaddr, (sz), _vm->region_haddr, _vm->region_st_sz, 1, 0UL );
130 129 : int _sigbus = fd_vm_is_check_align_enabled( vm ) & (!fd_ulong_is_aligned( _haddr, (align) ));
131 129 : if ( FD_UNLIKELY( sz > LONG_MAX ) ) {
132 0 : FD_VM_ERR_FOR_LOG_SYSCALL( _vm, FD_VM_SYSCALL_ERR_INVALID_LENGTH );
133 0 : *err = FD_VM_SYSCALL_ERR_SEGFAULT;
134 0 : return 0;
135 0 : }
136 129 : if( FD_UNLIKELY( (!_haddr) ) ) {
137 42 : vm->segv_vaddr = vaddr;
138 42 : vm->segv_access_len = (sz);
139 42 : vm->segv_access_type = FD_VM_ACCESS_TYPE_ST;
140 42 : FD_VM_ERR_FOR_LOG_EBPF( _vm, fd_vm_generate_access_violation( _vaddr, _vm->sbpf_version ) );
141 42 : *err = FD_VM_SYSCALL_ERR_SEGFAULT;
142 42 : return 0;
143 42 : }
144 87 : if ( FD_UNLIKELY( _sigbus ) ) {
145 0 : FD_VM_ERR_FOR_LOG_SYSCALL( _vm, FD_VM_SYSCALL_ERR_UNALIGNED_POINTER );
146 0 : *err = FD_VM_SYSCALL_ERR_SEGFAULT;
147 0 : return 0;
148 0 : }
149 87 : return (void *)_haddr;
150 87 : }
151 :
152 129 : #define FD_VM_MEM_HADDR_ST( vm, vaddr, align, sz ) (__extension__({ \
153 129 : int _err = 0; \
154 129 : void * ret = FD_VM_MEM_HADDR_ST_( vm, vaddr, align, sz, &_err ); \
155 129 : if ( FD_UNLIKELY( 0 != _err )) \
156 129 : return _err; \
157 129 : ret; \
158 87 : }))
159 :
160 : #define FD_VM_MEM_HADDR_ST_UNCHECKED( vm, vaddr, align, sz ) (__extension__({ \
161 : fd_vm_t * _vm = (vm); \
162 : ulong _vaddr = (vaddr); \
163 : ulong _haddr = fd_vm_mem_haddr( vm, _vaddr, (sz), _vm->region_haddr, _vm->region_st_sz, 1, 0UL ); \
164 : (void const *)_haddr; \
165 : }))
166 :
167 : #define FD_VM_MEM_HADDR_ST_WRITE_UNCHECKED( vm, vaddr, align, sz ) (__extension__({ \
168 : fd_vm_t * _vm = (vm); \
169 : ulong _vaddr = (vaddr); \
170 : ulong _haddr = fd_vm_mem_haddr( vm, _vaddr, (sz), _vm->region_haddr, _vm->region_st_sz, 0, 0UL ); \
171 : int _sigbus = fd_vm_is_check_align_enabled( vm ) & (!fd_ulong_is_aligned( _haddr, (align) )); \
172 : if ( FD_UNLIKELY( sz > LONG_MAX ) ) { \
173 : FD_VM_ERR_FOR_LOG_SYSCALL( _vm, FD_VM_SYSCALL_ERR_INVALID_LENGTH ); \
174 : return FD_VM_SYSCALL_ERR_SEGFAULT; \
175 : } \
176 : if( FD_UNLIKELY( !_haddr ) ) { \
177 : _vm->segv_vaddr = _vaddr; \
178 : _vm->segv_access_len = (sz); \
179 : _vm->segv_access_type = FD_VM_ACCESS_TYPE_ST; \
180 : FD_VM_ERR_FOR_LOG_EBPF( _vm, fd_vm_generate_access_violation( _vaddr, _vm->sbpf_version ) ); \
181 : return FD_VM_SYSCALL_ERR_SEGFAULT; \
182 : } \
183 : if ( FD_UNLIKELY( _sigbus ) ) { \
184 : FD_VM_ERR_FOR_LOG_SYSCALL( _vm, FD_VM_SYSCALL_ERR_UNALIGNED_POINTER ); \
185 : return FD_VM_SYSCALL_ERR_SEGFAULT; \
186 : } \
187 : (void *)_haddr; \
188 : }))
189 :
190 :
191 : #define FD_VM_MEM_HADDR_ST_NO_SZ_CHECK( vm, vaddr, align ) (__extension__({ \
192 : int _err = 0; \
193 : void * ret = FD_VM_MEM_HADDR_ST_( vm, vaddr, align, 1UL, &_err ); \
194 : if ( FD_UNLIKELY( 0 != _err )) \
195 : return _err; \
196 : ret; \
197 : }))
198 :
199 :
200 : #define FD_VM_MEM_HADDR_LD_FAST( vm, vaddr ) ((void const *)fd_vm_mem_haddr_fast( (vm), (vaddr), (vm)->region_haddr ))
201 : #define FD_VM_MEM_HADDR_ST_FAST( vm, vaddr ) ((void *)fd_vm_mem_haddr_fast( (vm), (vaddr), (vm)->region_haddr ))
202 :
203 : /* FD_VM_MEM_HADDR_AND_REGION_IDX_FROM_INPUT_REGION_CHECKED simply converts a vaddr within the input memory region
204 : into an haddr. The sets the region_idx and haddr. */
205 : #define FD_VM_MEM_HADDR_AND_REGION_IDX_FROM_INPUT_REGION_CHECKED( _vm, _offset, _out_region_idx, _out_haddr ) (__extension__({ \
206 : _out_region_idx = fd_vm_get_input_mem_region_idx( _vm, _offset ); \
207 : if( FD_UNLIKELY( _offset>=vm->input_mem_regions[ _out_region_idx ].vaddr_offset+vm->input_mem_regions[ _out_region_idx ].region_sz ) ) { \
208 : FD_VM_ERR_FOR_LOG_EBPF( vm, FD_VM_ERR_EBPF_ACCESS_VIOLATION ); \
209 : return FD_VM_SYSCALL_ERR_SEGFAULT; \
210 : } \
211 : _out_haddr = (uchar*)_vm->input_mem_regions[ _out_region_idx ].haddr + _offset - _vm->input_mem_regions[ _out_region_idx ].vaddr_offset; \
212 : }))
213 :
214 : /* FD_VM_MEM_SLICE_HADDR_[LD, ST] macros return an arbitrary value if sz == 0. This is because
215 : Agave's translate_slice function returns an empty array if the sz == 0.
216 :
217 : Users of this macro should be aware that they should never access the returned value if sz==0.
218 :
219 : https://github.com/solana-labs/solana/blob/767d24e5c10123c079e656cdcf9aeb8a5dae17db/programs/bpf_loader/src/syscalls/mod.rs#L560
220 :
221 : LONG_MAX check: https://github.com/anza-xyz/agave/blob/dc4b9dcbbf859ff48f40d00db824bde063fdafcc/programs/bpf_loader/src/syscalls/mod.rs#L580
222 : Technically, the check in Agave is against
223 : "pointer-sized signed integer type ... The size of this primitive is
224 : how many bytes it takes to reference any location in memory. For
225 : example, on a 32 bit target, this is 4 bytes and on a 64 bit target,
226 : this is 8 bytes."
227 : Realistically, given the amount of memory that a validator consumes,
228 : no one is going to be running on a 32 bit target. So, we don't bother
229 : with conditionally compiling in an INT_MAX check. We just assume
230 : LONG_MAX. */
231 72 : #define FD_VM_MEM_SLICE_HADDR_LD( vm, vaddr, align, sz ) (__extension__({ \
232 72 : if ( FD_UNLIKELY( sz > LONG_MAX ) ) { \
233 0 : FD_VM_ERR_FOR_LOG_SYSCALL( vm, FD_VM_SYSCALL_ERR_INVALID_LENGTH ); \
234 0 : return FD_VM_SYSCALL_ERR_INVALID_LENGTH; \
235 0 : } \
236 72 : void const * haddr = 0UL; \
237 72 : if ( FD_LIKELY( (ulong)sz > 0UL ) ) { \
238 216 : haddr = FD_VM_MEM_HADDR_LD( vm, vaddr, align, sz ); \
239 216 : } \
240 72 : haddr; \
241 72 : }))
242 :
243 :
244 : /* This is the same as the above function but passes in a size of 1 to support
245 : loads with no size bounding support. */
246 : #define FD_VM_MEM_SLICE_HADDR_LD_SZ_UNCHECKED( vm, vaddr, align ) (__extension__({ \
247 : if ( FD_UNLIKELY( sz > LONG_MAX ) ) { \
248 : FD_VM_ERR_FOR_LOG_SYSCALL( vm, FD_VM_SYSCALL_ERR_INVALID_LENGTH ); \
249 : return FD_VM_SYSCALL_ERR_INVALID_LENGTH; \
250 : } \
251 : void const * haddr = 0UL; \
252 : if ( FD_LIKELY( (ulong)sz > 0UL ) ) { \
253 : haddr = FD_VM_MEM_HADDR_LD( vm, vaddr, align, 1UL ); \
254 : } \
255 : haddr; \
256 : }))
257 :
258 93 : #define FD_VM_MEM_SLICE_HADDR_ST( vm, vaddr, align, sz ) (__extension__({ \
259 93 : if ( FD_UNLIKELY( sz > LONG_MAX ) ) { \
260 0 : FD_VM_ERR_FOR_LOG_SYSCALL( vm, FD_VM_SYSCALL_ERR_INVALID_LENGTH ); \
261 0 : return FD_VM_SYSCALL_ERR_INVALID_LENGTH; \
262 0 : } \
263 93 : void * haddr = 0UL; \
264 93 : if ( FD_LIKELY( (ulong)sz > 0UL ) ) { \
265 93 : haddr = FD_VM_MEM_HADDR_ST( vm, vaddr, align, sz ); \
266 57 : } \
267 93 : haddr; \
268 57 : }))
269 :
270 : /* FIXME: use overlap logic from runtime? */
271 48 : #define FD_VM_MEM_CHECK_NON_OVERLAPPING( vm, addr0, sz0, addr1, sz1 ) do { \
272 48 : if( FD_UNLIKELY(( ((addr0> addr1) && (fd_ulong_sat_sub(addr0, addr1) < sz1)) ) || \
273 48 : ( ((addr1>=addr0) && (fd_ulong_sat_sub(addr1, addr0) < sz0)) ) )) { \
274 18 : FD_VM_ERR_FOR_LOG_SYSCALL( vm, FD_VM_SYSCALL_ERR_COPY_OVERLAPPING ); \
275 18 : return FD_VM_SYSCALL_ERR_COPY_OVERLAPPING; \
276 18 : } \
277 48 : } while(0)
278 :
279 : /* Mimics Agave's `translate_mut!` macro by taking in a variable number
280 : of (vaddr, align, sz) entries and translates each of them, failing
281 : if any one of the translations fail, or if any of the vaddrs have
282 : overlapping haddr regions. The caller is responsible for creating
283 : each `fd_vm_haddr_query_t` object containing information about the
284 : vaddr, align, sz, and whether it is a slice. Takes in any number
285 : of queries, provided into the input as an array of pointers to each
286 : query. The translated haddr is written into the `haddr` field
287 : of each of the `fd_vm_haddr_query_t` objects on success.
288 :
289 : https://github.com/anza-xyz/agave/blob/v2.3.1/programs/bpf_loader/src/syscalls/mod.rs#L701-L738 */
290 126 : #define FD_VM_TRANSLATE_MUT( _vm, _queries ) do { \
291 126 : ulong _n = sizeof(_queries)/sizeof(fd_vm_haddr_query_t *); \
292 213 : for( ulong i=0UL; i<(_n); i++ ) { \
293 126 : fd_vm_haddr_query_t * query = _queries[i]; \
294 126 : if( query->is_slice ) { \
295 150 : query->haddr = FD_VM_MEM_SLICE_HADDR_ST( _vm, query->vaddr, query->align, query->sz ); \
296 150 : } else { \
297 33 : query->haddr = FD_VM_MEM_HADDR_ST( _vm, query->vaddr, query->align, query->sz ); \
298 30 : } \
299 126 : for( ulong j=0UL; j<i; j++ ) { \
300 0 : fd_vm_haddr_query_t * other_query = queries[j]; \
301 0 : FD_VM_MEM_CHECK_NON_OVERLAPPING( _vm, (ulong)query->haddr, query->sz, (ulong)other_query->haddr, other_query->sz ); \
302 0 : } \
303 87 : } \
304 126 : } while(0)
305 :
306 : #endif /* HEADER_fd_src_flamenco_vm_syscall_fd_vm_syscall_macros_h */
|