Line data Source code
1 : #include "fd_vm_syscall.h"
2 :
3 : #include "../../../ballet/base64/fd_base64.h"
4 : #include "../../../ballet/utf8/fd_utf8.h"
5 : #include "../../runtime/sysvar/fd_sysvar.h"
6 : #include "../../runtime/sysvar/fd_sysvar_clock.h"
7 : #include "../../runtime/sysvar/fd_sysvar_epoch_schedule.h"
8 : #include "../../runtime/sysvar/fd_sysvar_fees.h"
9 : #include "../../runtime/context/fd_exec_txn_ctx.h"
10 : #include "../../runtime/context/fd_exec_instr_ctx.h"
11 :
12 : int
13 : fd_vm_syscall_abort( /**/ void * _vm,
14 : FD_PARAM_UNUSED ulong r1,
15 : FD_PARAM_UNUSED ulong r2,
16 : FD_PARAM_UNUSED ulong r3,
17 : FD_PARAM_UNUSED ulong r4,
18 : FD_PARAM_UNUSED ulong r5,
19 0 : FD_PARAM_UNUSED ulong * _ret ) {
20 : /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/mod.rs#L630 */
21 0 : fd_vm_t * vm = (fd_vm_t *)_vm;
22 0 : FD_VM_ERR_FOR_LOG_SYSCALL( vm, FD_VM_SYSCALL_ERR_ABORT );
23 0 : return FD_VM_SYSCALL_ERR_ABORT;
24 0 : }
25 :
26 : /* FD_TRANSLATE_STRING returns a read only pointer to the host address of
27 : a valid utf8 string, or it errors.
28 :
29 : Analogous of Agave's translate_string_and_do().
30 : https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/mod.rs#L601
31 :
32 : As of v0.2.6, the only two usages are in syscall panic and syscall log. */
33 9 : #define FD_TRANSLATE_STRING( vm, vaddr, msg_sz ) (__extension__({ \
34 9 : char const * msg = FD_VM_MEM_SLICE_HADDR_LD( vm, vaddr, FD_VM_ALIGN_RUST_U8, msg_sz ); \
35 9 : if( FD_UNLIKELY( !fd_utf8_verify( msg, msg_sz ) ) ) { \
36 0 : FD_VM_ERR_FOR_LOG_SYSCALL( vm, FD_VM_SYSCALL_ERR_INVALID_STRING ); \
37 0 : return FD_VM_SYSCALL_ERR_INVALID_STRING; \
38 0 : } \
39 9 : msg; \
40 9 : }))
41 :
42 : int
43 : fd_vm_syscall_sol_panic( /**/ void * _vm,
44 : /**/ ulong file_vaddr,
45 : /**/ ulong file_sz,
46 : /**/ ulong line,
47 : /**/ ulong column,
48 : FD_PARAM_UNUSED ulong r5,
49 0 : FD_PARAM_UNUSED ulong * _ret ) {
50 0 : fd_vm_t * vm = (fd_vm_t *)_vm;
51 :
52 : /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/mod.rs#L637
53 :
54 : Note: this syscall is not used by the Rust SDK, only by the C SDK.
55 : Rust transforms `panic!()` into a log, followed by an abort.
56 : It's unclear if this syscall actually makes any sense... */
57 0 : FD_VM_CU_UPDATE( vm, file_sz );
58 :
59 : /* Validate string */
60 0 : FD_TRANSLATE_STRING( vm, file_vaddr, file_sz );
61 :
62 : /* Note: we truncate the log, ignoring file, line, column.
63 : As mentioned above, it's unclear if anyone is even using this syscall,
64 : so dealing with the complexity of Agave's log is a waste of time. */
65 0 : (void)line;
66 0 : (void)column;
67 :
68 0 : FD_VM_ERR_FOR_LOG_SYSCALL( vm, FD_VM_SYSCALL_ERR_PANIC );
69 0 : return FD_VM_SYSCALL_ERR_PANIC;
70 0 : }
71 :
72 : int
73 : fd_vm_syscall_sol_log( /**/ void * _vm,
74 : /**/ ulong msg_vaddr,
75 : /**/ ulong msg_sz,
76 : FD_PARAM_UNUSED ulong r2,
77 : FD_PARAM_UNUSED ulong r3,
78 : FD_PARAM_UNUSED ulong r4,
79 9 : /**/ ulong * _ret ) {
80 9 : fd_vm_t * vm = (fd_vm_t *)_vm;
81 :
82 : /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L5 */
83 :
84 9 : FD_VM_CU_UPDATE( vm, fd_ulong_max( msg_sz, FD_VM_SYSCALL_BASE_COST ) );
85 :
86 : /* Note: when msg_sz==0, msg can be undefined. fd_log_collector_program_log() handles it.
87 : FIXME: Macro invocation in function invocation? */
88 9 : fd_log_collector_program_log( vm->instr_ctx, FD_TRANSLATE_STRING( vm, msg_vaddr, msg_sz ), msg_sz );
89 :
90 0 : *_ret = 0UL;
91 9 : return FD_VM_SUCCESS;
92 18 : }
93 :
94 : int
95 : fd_vm_syscall_sol_log_64( void * _vm,
96 : ulong r1,
97 : ulong r2,
98 : ulong r3,
99 : ulong r4,
100 : ulong r5,
101 3 : ulong * _ret ) {
102 3 : fd_vm_t * vm = (fd_vm_t *)_vm;
103 :
104 : /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L37 */
105 :
106 3 : FD_VM_CU_UPDATE( vm, FD_VM_LOG_64_UNITS );
107 :
108 : /* Max msg_sz: 46 - 15 + 16*5 = 111 < 127 => we can use printf */
109 0 : fd_log_collector_printf_dangerous_max_127( vm->instr_ctx,
110 3 : "Program log: 0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%lx", r1, r2, r3, r4, r5 );
111 :
112 3 : *_ret = 0UL;
113 3 : return FD_VM_SUCCESS;
114 3 : }
115 :
116 : int
117 : fd_vm_syscall_sol_log_compute_units( /**/ void * _vm,
118 : FD_PARAM_UNUSED ulong r1,
119 : FD_PARAM_UNUSED ulong r2,
120 : FD_PARAM_UNUSED ulong r3,
121 : FD_PARAM_UNUSED ulong r4,
122 : FD_PARAM_UNUSED ulong r5,
123 0 : /**/ ulong * _ret ) {
124 0 : fd_vm_t * vm = (fd_vm_t *)_vm;
125 :
126 : /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L60 */
127 :
128 0 : FD_VM_CU_UPDATE( vm, FD_VM_SYSCALL_BASE_COST );
129 :
130 : /* Max msg_sz: 40 - 3 + 20 = 57 < 127 => we can use printf */
131 0 : fd_log_collector_printf_dangerous_max_127( vm->instr_ctx,
132 0 : "Program consumption: %lu units remaining", vm->cu );
133 :
134 0 : *_ret = 0UL;
135 0 : return FD_VM_SUCCESS;
136 0 : }
137 :
138 : int
139 : fd_vm_syscall_sol_log_pubkey( /**/ void * _vm,
140 : /**/ ulong pubkey_vaddr,
141 : FD_PARAM_UNUSED ulong r2,
142 : FD_PARAM_UNUSED ulong r3,
143 : FD_PARAM_UNUSED ulong r4,
144 : FD_PARAM_UNUSED ulong r5,
145 0 : /**/ ulong * _ret ) {
146 0 : fd_vm_t * vm = (fd_vm_t *)_vm;
147 :
148 : /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L84 */
149 :
150 0 : FD_VM_CU_UPDATE( vm, FD_VM_LOG_PUBKEY_UNITS );
151 :
152 0 : void const * pubkey = FD_VM_MEM_HADDR_LD( vm, pubkey_vaddr, FD_VM_ALIGN_RUST_PUBKEY, sizeof(fd_pubkey_t) );
153 :
154 0 : char msg[ FD_BASE58_ENCODED_32_SZ ]; ulong msg_sz;
155 0 : if( FD_UNLIKELY( fd_base58_encode_32( pubkey, &msg_sz, msg )==NULL ) ) {
156 0 : return FD_VM_SYSCALL_ERR_INVALID_STRING;
157 0 : }
158 :
159 0 : fd_log_collector_program_log( vm->instr_ctx, msg, msg_sz );
160 :
161 0 : *_ret = 0UL;
162 0 : return FD_VM_SUCCESS;
163 0 : }
164 :
165 : int
166 : fd_vm_syscall_sol_log_data( /**/ void * _vm,
167 : /**/ ulong slice_vaddr,
168 : /**/ ulong slice_cnt,
169 : FD_PARAM_UNUSED ulong r3,
170 : FD_PARAM_UNUSED ulong r4,
171 : FD_PARAM_UNUSED ulong r5,
172 3 : /**/ ulong * _ret ) {
173 3 : fd_vm_t * vm = (fd_vm_t *)_vm;
174 :
175 : /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L109
176 :
177 : Note: this is implemented following Agave's perverse behavior.
178 : We need to loop the slice multiple times to match the exact error,
179 : first compute budget, then memory mapping.
180 : And finally we can loop to log. */
181 :
182 : /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L121 */
183 :
184 3 : FD_VM_CU_UPDATE( vm, FD_VM_SYSCALL_BASE_COST );
185 :
186 : /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L123-L128 */
187 :
188 6 : fd_vm_vec_t const * slice = (fd_vm_vec_t const *)FD_VM_MEM_SLICE_HADDR_LD( vm, slice_vaddr, FD_VM_ALIGN_RUST_SLICE_U8_REF,
189 6 : fd_ulong_sat_mul( slice_cnt, sizeof(fd_vm_vec_t) ) );
190 :
191 : /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L130-L135 */
192 :
193 3 : FD_VM_CU_UPDATE( vm, fd_ulong_sat_mul( FD_VM_SYSCALL_BASE_COST, slice_cnt ) );
194 :
195 : /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L136-L141 */
196 :
197 18 : for( ulong i=0UL; i<slice_cnt; i++ ) {
198 15 : FD_VM_CU_UPDATE( vm, slice[i].len );
199 15 : }
200 :
201 : /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L145-L152 */
202 :
203 3 : ulong msg_sz = 14UL; /* "Program data: ", with space */
204 18 : for( ulong i=0UL; i<slice_cnt; i++ ) {
205 15 : ulong cur_len = slice[i].len;
206 : /* This fails the syscall in case of memory mapping issues */
207 30 : FD_VM_MEM_SLICE_HADDR_LD( vm, slice[i].addr, FD_VM_ALIGN_RUST_U8, cur_len );
208 : /* Every buffer will be base64 encoded + space separated */
209 0 : msg_sz += (slice[i].len + 2)/3*4 + (i > 0);
210 30 : }
211 :
212 : /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L156 */
213 :
214 3 : char msg[ FD_LOG_COLLECTOR_MAX ];
215 3 : ulong bytes_written = fd_log_collector_check_and_truncate( &vm->instr_ctx->txn_ctx->log_collector, msg_sz );
216 3 : if( FD_LIKELY( bytes_written < ULONG_MAX ) ) {
217 3 : fd_memcpy( msg, "Program data: ", 14 );
218 3 : char * buf = msg + 14;
219 :
220 18 : for( ulong i=0UL; i<slice_cnt; i++ ) {
221 15 : ulong cur_len = slice[i].len;
222 30 : void const * bytes = FD_VM_MEM_SLICE_HADDR_LD( vm, slice[i].addr, FD_VM_ALIGN_RUST_U8, cur_len );
223 :
224 15 : if( i ) { *buf = ' '; ++buf; } /* skip first */
225 30 : buf += fd_base64_encode( buf, bytes, cur_len );
226 30 : }
227 3 : FD_TEST( (ulong)(buf-msg)==msg_sz );
228 :
229 3 : fd_log_collector_msg( vm->instr_ctx, msg, msg_sz );
230 3 : }
231 :
232 3 : *_ret = 0;
233 3 : return FD_VM_SUCCESS;
234 3 : }
235 :
236 : int
237 : fd_vm_syscall_sol_alloc_free( /**/ void * _vm,
238 : /**/ ulong sz,
239 : /**/ ulong free_vaddr,
240 : FD_PARAM_UNUSED ulong r3,
241 : FD_PARAM_UNUSED ulong r4,
242 : FD_PARAM_UNUSED ulong r5,
243 0 : /**/ ulong * _ret ) {
244 0 : fd_vm_t * vm = (fd_vm_t *)_vm;
245 :
246 : /* https://github.com/anza-xyz/agave/blob/v2.0.8/programs/bpf_loader/src/syscalls/mod.rs#L666 */
247 :
248 : /* This syscall is ... uh ... problematic. But the community has
249 : already recognized this and deprecated it:
250 :
251 : https://github.com/solana-labs/solana/blob/v1.17.23/sdk/src/feature_set.rs#L846
252 :
253 : Unfortunately, old code never dies so, practically, this will need
254 : to be supported until the heat death of the universe.
255 :
256 : The most serious issue is that there is nothing to stop VM code
257 : making a decision based on the _location_ of the returned
258 : allocation. If different validator implementations use different
259 : allocator algorithms, though each implementation would behave
260 : functionally correct in isolation, the VM code that uses it would
261 : actually break consensus.
262 :
263 : As a result, every validator needs to use a bit-for-bit identical
264 : allocation algorithm. Fortunately, Solana is just using a basic
265 : bump allocator:
266 :
267 : https://github.com/solana-labs/solana/blob/v1.17.23/program-runtime/src/invoke_context.rs#L122-L148
268 :
269 : vm->heap_{sz,max} and the below replicate this exactly.
270 :
271 : Another major issue is that this alloc doesn't always conform
272 : typical malloc/free semantics (e.g. C/C++ requires malloc to have
273 : an alignment safe for primitive types ... 8 for the Solana machine
274 : model). This is clearly to support backward compat with older VM
275 : code (though ideally a malloc syscall should have behaved like ...
276 : well ... malloc from day 1). So the alignment behavior below is a
277 : bug-for-bug replication of that:
278 :
279 : https://github.com/solana-labs/solana/blob/v1.17.23/programs/bpf_loader/src/syscalls/mod.rs#L645-L681
280 : https://github.com/solana-labs/solana/blob/v1.17.23/sdk/program/src/entrypoint.rs#L265-L266
281 :
282 : More generally and already ranted about elsewhere, any code that
283 : uses malloc/free style dynamic allocation is inherently broken. So
284 : this syscall should have never existed in the first place ... it
285 : just feeds the trolls. The above is just additional implementation
286 : horror because people consistent think malloc/free is much simpler
287 : than it actually is. This is also an example of how quickly
288 : mistakes fossilize and become a thorn-in-the-side forever.
289 :
290 : IMPORTANT SAFETY TIP! heap_start must be non zero and both
291 : heap_start and heap_end should have an alignment of at least 8.
292 : This existing runtime policies around heap implicitly satisfy this.
293 :
294 : IMPORTANT SAFETY TIP! The specification for Rust's align_offset
295 : doesn't seem to provide a strong guarantee that it will return the
296 : minimal positive offset necessary to align pointers. It is
297 : possible for a "conforming" Rust compiler to break consensus by
298 : using a different align_offset implementation that aligned pointer
299 : between different compilations of the Solana validator and the
300 : below. */
301 :
302 : /* https://github.com/anza-xyz/agave/blob/v2.0.8/programs/bpf_loader/src/syscalls/mod.rs#L676-L680 */
303 :
304 0 : ulong align = fd_vm_is_check_align_enabled( vm ) ? 8UL : FD_VM_ALIGN_RUST_U8;
305 :
306 : /* https://github.com/anza-xyz/agave/blob/v2.0.8/programs/bpf_loader/src/syscalls/mod.rs#L681-L683
307 : Nothing to do. This section can't error, see:
308 : https://doc.rust-lang.org/1.81.0/src/core/alloc/layout.rs.html#70
309 : https://doc.rust-lang.org/1.81.0/src/core/alloc/layout.rs.html#100 */
310 :
311 :
312 : /* https://github.com/anza-xyz/agave/blob/v2.0.8/programs/bpf_loader/src/syscalls/mod.rs#L684
313 : Nothing to do.
314 : TODO: unclear if it throw InstructionError::CallDepth
315 : https://github.com/anza-xyz/agave/blob/v2.0.8/program-runtime/src/invoke_context.rs#L662 */
316 :
317 : /* https://github.com/anza-xyz/agave/blob/v2.0.8/programs/bpf_loader/src/syscalls/mod.rs#L685-L693 */
318 :
319 : /* Non-zero free address implies that this is a free() call. Since
320 : this is a bump allocator, free is a no-op. */
321 0 : if( FD_UNLIKELY( free_vaddr ) ) {
322 0 : *_ret = 0UL;
323 0 : return FD_VM_SUCCESS;
324 0 : }
325 :
326 :
327 0 : ulong heap_sz = fd_ulong_align_up( vm->heap_sz, align );
328 0 : ulong heap_vaddr = fd_ulong_sat_add ( heap_sz, FD_VM_MEM_MAP_HEAP_REGION_START );
329 0 : /**/ heap_sz = fd_ulong_sat_add ( heap_sz, sz );
330 :
331 0 : if( FD_UNLIKELY( heap_sz > vm->heap_max ) ) { /* Not enough free memory */
332 0 : *_ret = 0UL;
333 0 : return FD_VM_SUCCESS;
334 0 : }
335 :
336 0 : vm->heap_sz = heap_sz;
337 :
338 0 : *_ret = heap_vaddr;
339 0 : return FD_VM_SUCCESS;
340 0 : }
341 :
342 : /* https://github.com/anza-xyz/agave/blob/v2.0.8/programs/bpf_loader/src/syscalls/mem_ops.rs#L145 */
343 : int
344 : fd_vm_memmove( fd_vm_t * vm,
345 : ulong dst_vaddr,
346 : ulong src_vaddr,
347 66 : ulong sz ) {
348 66 : if( FD_UNLIKELY( !sz ) ) {
349 0 : return FD_VM_SUCCESS;
350 0 : }
351 :
352 66 : if( !vm->direct_mapping ) {
353 24 : void * dst = FD_VM_MEM_HADDR_ST( vm, dst_vaddr, FD_VM_ALIGN_RUST_U8, sz );
354 48 : void const * src = FD_VM_MEM_HADDR_LD( vm, src_vaddr, FD_VM_ALIGN_RUST_U8, sz );
355 0 : memmove( dst, src, sz );
356 48 : } else {
357 : /* If the src and dst vaddrs overlap and src_vaddr < dst_vaddr, Agave iterates through input regions backwards
358 : to maintain correct memmove behavior for overlapping cases. Although this logic should only apply to the src and dst
359 : vaddrs being in the input data region (since that is the only possible case you could have overlapping, chunked-up memmoves),
360 : Agave will iterate backwards in ANY region. If it eventually reaches the end of a region after iterating backwards and
361 : hits an access violation, the bytes from [region_begin, start_vaddr] will still be written to, causing fuzzing mismatches.
362 : In this case, if we didn't have the reverse flag, we would have thrown an access violation before any bytes were copied.
363 : The same logic applies to memmoves that go past the high end of a region - reverse iteration logic would throw an access
364 : violation before any bytes were copied, while the current logic would copy the bytes until the end of the region.
365 : https://github.com/anza-xyz/agave/blob/v2.1.0/programs/bpf_loader/src/syscalls/mem_ops.rs#L184 */
366 42 : uchar reverse = !!( dst_vaddr >= src_vaddr && dst_vaddr - src_vaddr < sz );
367 :
368 : /* In reverse calculations, start from the rightmost vaddr that will be accessed (note the - 1). */
369 42 : ulong dst_vaddr_begin = reverse ? fd_ulong_sat_add( dst_vaddr, sz - 1UL ) : dst_vaddr;
370 42 : ulong src_vaddr_begin = reverse ? fd_ulong_sat_add( src_vaddr, sz - 1UL ) : src_vaddr;
371 :
372 : /* Find the correct src and dst haddrs to start operating from. If the src or dst vaddrs
373 : belong to the input data region (4), keep track of region statistics to memmove in chunks. */
374 42 : ulong dst_region = FD_VADDR_TO_REGION( dst_vaddr_begin );
375 42 : uchar dst_is_input_mem_region = ( dst_region==FD_VM_INPUT_REGION );
376 42 : ulong dst_offset = dst_vaddr_begin & FD_VM_OFFSET_MASK;
377 42 : ulong dst_region_idx = 0UL;
378 42 : ulong dst_bytes_rem_in_cur_region;
379 42 : uchar * dst_haddr;
380 42 : if( dst_is_input_mem_region ) {
381 18 : FD_VM_MEM_HADDR_AND_REGION_IDX_FROM_INPUT_REGION_CHECKED( vm, dst_offset, dst_region_idx, dst_haddr );
382 18 : if( FD_UNLIKELY( !vm->input_mem_regions[ dst_region_idx ].is_writable ) ) {
383 0 : FD_VM_ERR_FOR_LOG_EBPF( vm, FD_VM_ERR_EBPF_ACCESS_VIOLATION );
384 0 : return FD_VM_SYSCALL_ERR_SEGFAULT;
385 0 : }
386 18 : if( FD_UNLIKELY( reverse ) ) {
387 : /* Bytes remaining between region begin and current position (+ 1 for inclusive region beginning). */
388 6 : dst_bytes_rem_in_cur_region = fd_ulong_sat_sub( dst_offset + 1UL, vm->input_mem_regions[ dst_region_idx ].vaddr_offset );
389 12 : } else {
390 : /* Bytes remaining between current position and region end. */
391 12 : dst_bytes_rem_in_cur_region = fd_ulong_sat_sub( vm->input_mem_regions[ dst_region_idx ].region_sz, ( dst_offset - vm->input_mem_regions[ dst_region_idx ].vaddr_offset ) );
392 12 : }
393 24 : } else {
394 24 : dst_haddr = (uchar*)FD_VM_MEM_HADDR_ST_NO_SZ_CHECK( vm, dst_vaddr_begin, FD_VM_ALIGN_RUST_U8 );
395 :
396 18 : if( FD_UNLIKELY( reverse ) ) {
397 : /* Bytes remaining is minimum of the offset from the beginning of the current
398 : region (+1 for inclusive region beginning) and the number of storable bytes in the region. */
399 3 : dst_bytes_rem_in_cur_region = fd_ulong_min( vm->region_st_sz[ dst_region ], dst_offset + 1UL );
400 :
401 15 : } else {
402 : /* Bytes remaining is the number of writable bytes left in the region */
403 15 : dst_bytes_rem_in_cur_region = fd_ulong_sat_sub( vm->region_st_sz[ dst_region ], dst_offset );
404 15 : }
405 18 : }
406 :
407 : /* Logic for src vaddr translation is similar to above excluding any writable checks. */
408 36 : ulong src_region = FD_VADDR_TO_REGION( src_vaddr_begin );
409 36 : uchar src_is_input_mem_region = ( src_region==FD_VM_INPUT_REGION );
410 36 : ulong src_offset = src_vaddr_begin & FD_VM_OFFSET_MASK;
411 36 : ulong src_region_idx = 0UL;
412 36 : ulong src_bytes_rem_in_cur_region;
413 36 : uchar * src_haddr;
414 36 : if( src_is_input_mem_region ) {
415 18 : FD_VM_MEM_HADDR_AND_REGION_IDX_FROM_INPUT_REGION_CHECKED( vm, src_offset, src_region_idx, src_haddr );
416 18 : if( FD_UNLIKELY( reverse ) ) {
417 6 : src_bytes_rem_in_cur_region = fd_ulong_sat_sub( src_offset + 1UL, vm->input_mem_regions[ src_region_idx ].vaddr_offset );
418 12 : } else {
419 12 : src_bytes_rem_in_cur_region = fd_ulong_sat_sub( vm->input_mem_regions[ src_region_idx ].region_sz, ( src_offset - vm->input_mem_regions[ src_region_idx ].vaddr_offset ) );
420 12 : }
421 18 : } else {
422 54 : src_haddr = (uchar*)FD_VM_MEM_HADDR_LD_NO_SZ_CHECK( vm, src_vaddr_begin, FD_VM_ALIGN_RUST_U8 );
423 :
424 18 : if( FD_UNLIKELY( reverse ) ) {
425 3 : src_bytes_rem_in_cur_region = fd_ulong_min( vm->region_ld_sz[ src_region ], src_offset + 1UL );
426 :
427 15 : } else {
428 15 : src_bytes_rem_in_cur_region = fd_ulong_sat_sub( vm->region_ld_sz[ src_region ], src_offset );
429 15 : }
430 54 : }
431 :
432 : /* Short circuit: if the number of copyable bytes stays within all memory regions,
433 : just memmove and return. This is a majority case in mainnet, devnet, and testnet.
434 : Someone would have to be very crafty and clever to construct a transaction that
435 : deploys and invokes a custom program that does not fall into this branch. */
436 36 : if( FD_LIKELY( sz<=dst_bytes_rem_in_cur_region && sz<=src_bytes_rem_in_cur_region ) ) {
437 21 : if( FD_UNLIKELY( reverse ) ) {
438 : /* In the reverse iteration case, the haddrs point to the end of the region here. Since the
439 : above checks guarantee that there are enough bytes left in the src and dst regions to do
440 : a direct memmove, we can just subtract (sz-1) from the haddrs, memmove, and return. */
441 3 : memmove( dst_haddr - sz + 1UL, src_haddr - sz + 1UL, sz );
442 18 : } else {
443 : /* In normal iteration, the haddrs correspond to the correct starting point for the memcpy,
444 : so no further translation has to be done. */
445 18 : memmove( dst_haddr, src_haddr, sz );
446 18 : }
447 21 : return FD_VM_SUCCESS;
448 21 : }
449 :
450 : /* Copy over the bytes from each region in chunks. */
451 57 : while( sz>0UL ) {
452 : /* End of region case */
453 45 : if( FD_UNLIKELY( src_bytes_rem_in_cur_region==0UL ) ) {
454 : /* Same as above, except no writable checks. */
455 30 : if( FD_LIKELY( !reverse &&
456 30 : src_is_input_mem_region &&
457 30 : src_region_idx+1UL<vm->input_mem_regions_cnt ) ) {
458 12 : if( FD_UNLIKELY( vm->input_mem_regions[ src_region_idx+1UL ].is_acct_data != vm->input_mem_regions[ src_region_idx ].is_acct_data ) ) {
459 0 : FD_VM_ERR_FOR_LOG_SYSCALL( vm, FD_VM_SYSCALL_ERR_INVALID_LENGTH );
460 0 : return FD_VM_SYSCALL_ERR_SEGFAULT;
461 0 : }
462 12 : src_region_idx++;
463 12 : src_haddr = (uchar*)vm->input_mem_regions[ src_region_idx ].haddr;
464 18 : } else if( FD_LIKELY( reverse && src_region_idx>0UL ) ) {
465 15 : if( FD_UNLIKELY( vm->input_mem_regions[ src_region_idx-1UL ].is_acct_data != vm->input_mem_regions[ src_region_idx ].is_acct_data ) ) {
466 0 : FD_VM_ERR_FOR_LOG_SYSCALL( vm, FD_VM_SYSCALL_ERR_INVALID_LENGTH );
467 0 : return FD_VM_SYSCALL_ERR_SEGFAULT;
468 0 : }
469 15 : src_region_idx--;
470 15 : src_haddr = (uchar*)vm->input_mem_regions[ src_region_idx ].haddr + vm->input_mem_regions[ src_region_idx ].region_sz - 1UL;
471 15 : } else {
472 3 : FD_VM_ERR_FOR_LOG_EBPF( vm, FD_VM_ERR_EBPF_ACCESS_VIOLATION );
473 3 : return FD_VM_SYSCALL_ERR_SEGFAULT;
474 3 : }
475 27 : src_bytes_rem_in_cur_region = vm->input_mem_regions[ src_region_idx ].region_sz;
476 27 : }
477 42 : if( FD_UNLIKELY( dst_bytes_rem_in_cur_region==0UL ) ) {
478 : /* Only proceed if:
479 : - We are in the input memory region
480 : - There are remaining input memory regions to copy from (for both regular and reverse iteration orders)
481 : - The next input memory region is writable
482 : Fail otherwise. */
483 9 : if( FD_LIKELY( !reverse &&
484 9 : dst_is_input_mem_region &&
485 9 : dst_region_idx+1UL<vm->input_mem_regions_cnt &&
486 9 : vm->input_mem_regions[ dst_region_idx+1UL ].is_writable ) ) {
487 6 : if( FD_UNLIKELY( vm->input_mem_regions[ dst_region_idx+1UL ].is_acct_data != vm->input_mem_regions[ dst_region_idx ].is_acct_data ) ) {
488 0 : FD_VM_ERR_FOR_LOG_SYSCALL( vm, FD_VM_SYSCALL_ERR_INVALID_LENGTH );
489 0 : return FD_VM_SYSCALL_ERR_SEGFAULT;
490 0 : }
491 : /* In normal iteration, we move the haddr to the beginning of the next region. */
492 6 : dst_region_idx++;
493 6 : dst_haddr = (uchar*)vm->input_mem_regions[ dst_region_idx ].haddr;
494 6 : } else if( FD_LIKELY( reverse &&
495 3 : dst_region_idx>0UL &&
496 3 : vm->input_mem_regions[ dst_region_idx-1UL ].is_writable ) ) {
497 3 : if( FD_UNLIKELY( vm->input_mem_regions[ dst_region_idx-1UL ].is_acct_data != vm->input_mem_regions[ dst_region_idx ].is_acct_data ) ) {
498 0 : FD_VM_ERR_FOR_LOG_SYSCALL( vm, FD_VM_SYSCALL_ERR_INVALID_LENGTH );
499 0 : return FD_VM_SYSCALL_ERR_SEGFAULT;
500 0 : }
501 : /* Note that when reverse iterating, we set the haddr to the END of the PREVIOUS region. */
502 3 : dst_region_idx--;
503 3 : dst_haddr = (uchar*)vm->input_mem_regions[ dst_region_idx ].haddr + vm->input_mem_regions[ dst_region_idx ].region_sz - 1UL;
504 3 : } else {
505 0 : FD_VM_ERR_FOR_LOG_EBPF( vm, FD_VM_ERR_EBPF_ACCESS_VIOLATION );
506 0 : return FD_VM_SYSCALL_ERR_SEGFAULT;
507 0 : }
508 9 : dst_bytes_rem_in_cur_region = vm->input_mem_regions[ dst_region_idx ].region_sz;
509 9 : }
510 :
511 : /* Number of bytes to operate on in this iteration is the min of:
512 : - number of bytes left to copy
513 : - bytes left in the current src region
514 : - bytes left in the current dst region */
515 42 : ulong num_bytes_to_copy = fd_ulong_min( sz, fd_ulong_min( src_bytes_rem_in_cur_region, dst_bytes_rem_in_cur_region ) );
516 42 : if( FD_UNLIKELY( reverse ) ) {
517 21 : memmove( dst_haddr - num_bytes_to_copy + 1UL, src_haddr - num_bytes_to_copy + 1UL, num_bytes_to_copy );
518 21 : dst_haddr -= num_bytes_to_copy;
519 21 : src_haddr -= num_bytes_to_copy;
520 21 : } else {
521 21 : memmove( dst_haddr, src_haddr, num_bytes_to_copy );
522 21 : dst_haddr += num_bytes_to_copy;
523 21 : src_haddr += num_bytes_to_copy;
524 21 : }
525 :
526 : /* Update size trackers */
527 42 : sz -= num_bytes_to_copy;
528 42 : src_bytes_rem_in_cur_region -= num_bytes_to_copy;
529 42 : dst_bytes_rem_in_cur_region -= num_bytes_to_copy;
530 42 : }
531 15 : }
532 :
533 27 : return FD_VM_SUCCESS;
534 66 : }
535 :
536 : /* https://github.com/anza-xyz/agave/blob/v2.0.8/programs/bpf_loader/src/syscalls/mem_ops.rs#L41 */
537 : int
538 : fd_vm_syscall_sol_memmove( /**/ void * _vm,
539 : /**/ ulong dst_vaddr,
540 : /**/ ulong src_vaddr,
541 : /**/ ulong sz,
542 : FD_PARAM_UNUSED ulong r4,
543 : FD_PARAM_UNUSED ulong r5,
544 36 : /**/ ulong * _ret ) {
545 36 : *_ret = 0;
546 36 : fd_vm_t * vm = (fd_vm_t *)_vm;
547 :
548 36 : FD_VM_CU_MEM_OP_UPDATE( vm, sz );
549 :
550 : /* No overlap check for memmove. */
551 0 : return fd_vm_memmove( vm, dst_vaddr, src_vaddr, sz );
552 36 : }
553 :
554 : /* https://github.com/anza-xyz/agave/blob/v2.0.8/programs/bpf_loader/src/syscalls/mem_ops.rs#L18 */
555 : int
556 : fd_vm_syscall_sol_memcpy( /**/ void * _vm,
557 : /**/ ulong dst_vaddr,
558 : /**/ ulong src_vaddr,
559 : /**/ ulong sz,
560 : FD_PARAM_UNUSED ulong r4,
561 : FD_PARAM_UNUSED ulong r5,
562 48 : /**/ ulong * _ret ) {
563 48 : *_ret = 0;
564 48 : fd_vm_t * vm = (fd_vm_t *)_vm;
565 :
566 48 : FD_VM_CU_MEM_OP_UPDATE( vm, sz );
567 :
568 : /* Exact same as memmove, except also check overlap.
569 : https://github.com/anza-xyz/agave/blob/master/programs/bpf_loader/src/syscalls/mem_ops.rs#L31 */
570 48 : FD_VM_MEM_CHECK_NON_OVERLAPPING( vm, src_vaddr, sz, dst_vaddr, sz );
571 :
572 30 : return fd_vm_memmove( vm, dst_vaddr, src_vaddr, sz );
573 48 : }
574 :
575 : int
576 : fd_vm_syscall_sol_memcmp( /**/ void * _vm,
577 : /**/ ulong m0_vaddr,
578 : /**/ ulong m1_vaddr,
579 : /**/ ulong sz,
580 : /**/ ulong out_vaddr,
581 : FD_PARAM_UNUSED ulong r5,
582 15 : /**/ ulong * _ret ) {
583 15 : *_ret = 0;
584 15 : fd_vm_t * vm = (fd_vm_t *)_vm;
585 :
586 : /* https://github.com/anza-xyz/agave/blob/master/programs/bpf_loader/src/syscalls/mem_ops.rs#L59 */
587 :
588 15 : FD_VM_CU_MEM_OP_UPDATE( vm, sz );
589 :
590 : /* Note: though this behaves like a normal C-style memcmp, we can't
591 : use the compilers / libc memcmp directly because the specification
592 : doesn't provide strong enough guarantees about the return value (it
593 : only promises the sign). */
594 :
595 15 : if( !vm->direct_mapping ) {
596 0 : uchar const * m0 = (uchar const *)FD_VM_MEM_SLICE_HADDR_LD( vm, m0_vaddr, FD_VM_ALIGN_RUST_U8, sz );
597 0 : uchar const * m1 = (uchar const *)FD_VM_MEM_SLICE_HADDR_LD( vm, m1_vaddr, FD_VM_ALIGN_RUST_U8, sz );
598 :
599 : /* Silly that this doesn't use r0 to return ... slower, more edge
600 : case, different from libc style memcmp, harder to callers to use,
601 : etc ... probably too late to do anything about it now ... sigh */
602 :
603 0 : void * _out = FD_VM_MEM_HADDR_ST( vm, out_vaddr, FD_VM_ALIGN_RUST_I32, 4UL );
604 :
605 0 : int out = 0;
606 0 : for( ulong i=0UL; i<sz; i++ ) {
607 0 : int i0 = (int)m0[i];
608 0 : int i1 = (int)m1[i];
609 0 : if( i0!=i1 ) {
610 0 : out = i0 - i1;
611 0 : break;
612 0 : }
613 0 : }
614 :
615 0 : fd_memcpy( _out, &out, 4UL ); /* Sigh ... see note above (and might be unaligned ... double sigh) */
616 :
617 0 : return FD_VM_SUCCESS;
618 15 : } else {
619 : /* In the case that direct mapping is enabled, the behavior for memcmps
620 : differ significantly from the non-dm case. The key difference is that
621 : invalid loads will instantly lead to errors in the non-dm case. However,
622 : when direct mapping is enabled, we will first try to memcmp the largest
623 : size valid chunk first, and will exit successfully if a difference is
624 : found without aborting from the VM. A chunk is defined as the largest
625 : valid vaddr range in both memory regions that doesn't span multiple
626 : regions.
627 :
628 : Example:
629 : fd_vm_syscall_sol_memcmp( vm, m0_addr : 0x4000, m1_vaddr : 0x2000, 0x200, ... );
630 : m0's region: m0_addr 0x4000 -> 0x4000 + 0x50 (region sz 0x50)
631 : m1's region: m1_addr 0x2000 -> 0x2000 + 0x100 (region sz 0x100)
632 : sz: 0x200
633 :
634 : Case 1: 0x4000 -> 0x4050 does have the same bytes as 0x2000 -> 0x2050
635 : Case 2: 0x4000 -> 0x4050 does NOT have the same bytes as 0x2000 -> 0x2050
636 :
637 : Pre-DM:
638 : This will fail out before any bytes are compared because the memory
639 : translation is done first.
640 :
641 : Post-DM:
642 : For case 1, the memcmp will return an error and the VM will exit because
643 : the memcmp will eventually try to access 0x4051 which is invalid. First
644 : 0x50 bytes are compared, but the next chunk will lead to an invalid
645 : access.
646 :
647 : For case 2, the memcmp will first translate the first 0x50 bytes and will
648 : see that the bytes are not the same. This will lead to the syscall
649 : exiting out successfully without detecting the access violation.
650 :
651 : https://github.com/anza-xyz/agave/blob/v2.0.10/programs/bpf_loader/src/syscalls/mem_ops.rs#L213
652 : */
653 :
654 15 : void * _out = FD_VM_MEM_HADDR_ST( vm, out_vaddr, FD_VM_ALIGN_RUST_I32, 4UL );
655 0 : int out = 0;
656 :
657 : /* Lookup host address chunks. Try to do a standard memcpy if the regions
658 : do not cross memory regions. The translation logic is different if the
659 : the virtual address region is the input region vs. not. See the comment
660 : in fd_bpf_loader_serialization for more details on how the input
661 : region is different from other regions. The input data region will try
662 : to lookup the number of remaining bytes in the specific data region. If
663 : the memory access is not in the input data region, assume the bytes in
664 : the current region are bound by the size of the remaining bytes in the
665 : region. */
666 :
667 12 : ulong m0_region = FD_VADDR_TO_REGION( m0_vaddr );
668 12 : ulong m0_offset = m0_vaddr & FD_VM_OFFSET_MASK;
669 12 : ulong m0_region_idx = 0UL;
670 12 : ulong m0_bytes_in_cur_region = sz;
671 12 : uchar * m0_haddr = NULL;
672 12 : if( m0_region==FD_VM_INPUT_REGION ) {
673 6 : m0_region_idx = fd_vm_get_input_mem_region_idx( vm, m0_offset );
674 6 : m0_haddr = (uchar*)(vm->input_mem_regions[ m0_region_idx ].haddr + m0_offset - vm->input_mem_regions[ m0_region_idx ].vaddr_offset);
675 6 : m0_bytes_in_cur_region = fd_ulong_min( sz, fd_ulong_sat_sub( vm->input_mem_regions[ m0_region_idx ].region_sz,
676 6 : ((ulong)m0_haddr - vm->input_mem_regions[ m0_region_idx ].haddr) ) );
677 6 : } else {
678 : /* We can safely load a slice of 1 byte here because we know that we will
679 : not ever read more than the number of bytes that are left in the
680 : region. */
681 6 : m0_bytes_in_cur_region = fd_ulong_min( sz, vm->region_ld_sz[ m0_region ] - m0_offset );
682 12 : m0_haddr = (uchar *)FD_VM_MEM_SLICE_HADDR_LD_SZ_UNCHECKED( vm, m0_vaddr, FD_VM_ALIGN_RUST_U8 );
683 12 : }
684 :
685 12 : ulong m1_region = FD_VADDR_TO_REGION( m1_vaddr );
686 12 : ulong m1_offset = m1_vaddr & FD_VM_OFFSET_MASK;
687 12 : ulong m1_region_idx = 0UL;
688 12 : ulong m1_bytes_in_cur_region = sz;
689 12 : uchar * m1_haddr = NULL;
690 12 : if( m1_region==FD_VM_INPUT_REGION ) {
691 6 : m1_region_idx = fd_vm_get_input_mem_region_idx( vm, m1_offset );
692 6 : m1_haddr = (uchar*)(vm->input_mem_regions[ m1_region_idx ].haddr + m1_offset - vm->input_mem_regions[ m1_region_idx ].vaddr_offset);
693 6 : m1_bytes_in_cur_region = fd_ulong_min( sz, fd_ulong_sat_sub( vm->input_mem_regions[ m1_region_idx ].region_sz,
694 6 : ((ulong)m1_haddr - vm->input_mem_regions[ m1_region_idx ].haddr) ) );
695 6 : } else {
696 6 : m1_bytes_in_cur_region = fd_ulong_min( sz, vm->region_ld_sz[ m1_region ] - m1_offset );
697 12 : m1_haddr = (uchar *)FD_VM_MEM_SLICE_HADDR_LD_SZ_UNCHECKED( vm, m1_vaddr, FD_VM_ALIGN_RUST_U8 );
698 12 : }
699 :
700 : /* Case where the operation spans multiple regions. Copy over the bytes
701 : from each region while iterating to the next one. */
702 : /* TODO: An optimization would be to memcmp chunks at once */
703 12 : ulong m0_idx = 0UL;
704 12 : ulong m1_idx = 0UL;
705 612 : for( ulong i=0UL; i<sz; i++ ) {
706 609 : if( FD_UNLIKELY( !m0_bytes_in_cur_region ) ) {
707 : /* If the memory is not in the input region or it is the last input
708 : memory region, that means that if we don't exit now we will have
709 : an access violation. */
710 6 : if( FD_UNLIKELY( m0_region!=FD_VM_INPUT_REGION || ++m0_region_idx>=vm->input_mem_regions_cnt ) ) {
711 0 : FD_VM_ERR_FOR_LOG_EBPF( vm, FD_VM_ERR_EBPF_ACCESS_VIOLATION );
712 0 : return FD_VM_SYSCALL_ERR_SEGFAULT;
713 0 : }
714 6 : if( FD_UNLIKELY( vm->input_mem_regions[ m0_region_idx-1UL ].is_acct_data != vm->input_mem_regions[ m0_region_idx ].is_acct_data ) ) {
715 0 : FD_VM_ERR_FOR_LOG_SYSCALL( vm, FD_VM_SYSCALL_ERR_INVALID_LENGTH );
716 0 : return FD_VM_SYSCALL_ERR_SEGFAULT;
717 0 : }
718 : /* Otherwise, query the next input region. */
719 6 : m0_haddr = (uchar*)vm->input_mem_regions[ m0_region_idx ].haddr;
720 6 : m0_idx = 0UL;
721 6 : m0_bytes_in_cur_region = vm->input_mem_regions[ m0_region_idx ].region_sz;
722 6 : }
723 609 : if( FD_UNLIKELY( !m1_bytes_in_cur_region ) ) {
724 0 : if( FD_UNLIKELY( m1_region!=FD_VM_INPUT_REGION || ++m1_region_idx>=vm->input_mem_regions_cnt ) ) {
725 0 : FD_VM_ERR_FOR_LOG_EBPF( vm, FD_VM_ERR_EBPF_ACCESS_VIOLATION );
726 0 : return FD_VM_SYSCALL_ERR_SEGFAULT;
727 0 : }
728 0 : if( FD_UNLIKELY( vm->input_mem_regions[ m1_region_idx-1UL ].is_acct_data != vm->input_mem_regions[ m1_region_idx ].is_acct_data ) ) {
729 0 : FD_VM_ERR_FOR_LOG_SYSCALL( vm, FD_VM_SYSCALL_ERR_INVALID_LENGTH );
730 0 : return FD_VM_SYSCALL_ERR_SEGFAULT;
731 0 : }
732 0 : m1_haddr = (uchar*)vm->input_mem_regions[ m1_region_idx ].haddr;
733 0 : m1_idx = 0UL;
734 0 : m1_bytes_in_cur_region = vm->input_mem_regions[ m1_region_idx ].region_sz;
735 0 : }
736 :
737 609 : int i0 = (int)m0_haddr[ m0_idx ];
738 609 : int i1 = (int)m1_haddr[ m1_idx ];
739 609 : if( i0!=i1 ) {
740 9 : out = i0 - i1;
741 9 : break;
742 9 : }
743 :
744 600 : m0_bytes_in_cur_region--;
745 600 : m1_bytes_in_cur_region--;
746 600 : m0_idx++;
747 600 : m1_idx++;
748 600 : }
749 12 : fd_memcpy( _out, &out, 4UL ); /* Sigh ... see note above (and might be unaligned ... double sigh) */
750 12 : return FD_VM_SUCCESS;
751 12 : }
752 15 : }
753 :
754 : int
755 : fd_vm_syscall_sol_memset( /**/ void * _vm,
756 : /**/ ulong dst_vaddr,
757 : /**/ ulong c,
758 : /**/ ulong sz,
759 : FD_PARAM_UNUSED ulong r4,
760 : FD_PARAM_UNUSED ulong r5,
761 27 : /**/ ulong * _ret ) {
762 27 : fd_vm_t * vm = (fd_vm_t *)_vm;
763 27 : *_ret = 0;
764 :
765 : /* https://github.com/anza-xyz/agave/blob/master/programs/bpf_loader/src/syscalls/mem_ops.rs#L115 */
766 :
767 27 : FD_VM_CU_MEM_OP_UPDATE( vm, sz );
768 :
769 27 : if( FD_UNLIKELY( !sz ) ) {
770 0 : return FD_VM_SUCCESS;
771 0 : }
772 :
773 27 : ulong region = FD_VADDR_TO_REGION( dst_vaddr );
774 27 : ulong offset = dst_vaddr & FD_VM_OFFSET_MASK;
775 27 : uchar * haddr;
776 :
777 27 : int b = (int)(c & 255UL);
778 :
779 27 : if( !vm->direct_mapping ) {
780 9 : haddr = FD_VM_MEM_HADDR_ST( vm, dst_vaddr, FD_VM_ALIGN_RUST_U8, sz );
781 0 : fd_memset( haddr, b, sz );
782 18 : } else if( region!=FD_VM_INPUT_REGION ) {
783 : /* Here we special case non-input region memsets: we try to memset
784 : as many bytes as possible until it reaches an unwritable section.
785 : This is done in order to ensure error-code conformance with
786 : Agave. */
787 9 : haddr = (uchar*)FD_VM_MEM_HADDR_ST_FAST( vm, dst_vaddr );
788 9 : ulong bytes_in_cur_region = fd_ulong_sat_sub( vm->region_st_sz[ region ], offset );
789 9 : ulong bytes_to_set = fd_ulong_min( sz, bytes_in_cur_region );
790 9 : fd_memset( haddr, b, bytes_to_set );
791 9 : if( FD_UNLIKELY( bytes_to_set<sz ) ) {
792 3 : FD_VM_ERR_FOR_LOG_EBPF( vm, FD_VM_ERR_EBPF_ACCESS_VIOLATION );
793 3 : return FD_VM_SYSCALL_ERR_SEGFAULT;
794 3 : }
795 9 : } else {
796 : /* In this case, we are in the input region AND direct mapping is
797 : enabled. Get the haddr and input region and check if it's
798 : writable. This means that we may potentially iterate over
799 : multiple regions. */
800 9 : ulong region_idx;
801 9 : FD_VM_MEM_HADDR_AND_REGION_IDX_FROM_INPUT_REGION_CHECKED( vm, offset, region_idx, haddr );
802 0 : ulong offset_in_cur_region = offset - vm->input_mem_regions[ region_idx ].vaddr_offset;
803 9 : ulong bytes_in_cur_region = fd_ulong_sat_sub( vm->input_mem_regions[ region_idx ].region_sz, offset_in_cur_region );
804 :
805 : /* Check that current region is writable */
806 9 : if( FD_UNLIKELY( !vm->input_mem_regions[ region_idx ].is_writable && sz ) ) {
807 0 : FD_VM_ERR_FOR_LOG_EBPF( vm, FD_VM_ERR_EBPF_ACCESS_VIOLATION );
808 0 : return FD_VM_SYSCALL_ERR_SEGFAULT;
809 0 : }
810 :
811 : /* Memset goes into multiple regions. */
812 30 : while( sz>0UL ) {
813 :
814 : /* Memset bytes */
815 30 : ulong num_bytes_to_set = fd_ulong_min( sz, bytes_in_cur_region );
816 30 : fd_memset( haddr, b, num_bytes_to_set );
817 30 : sz -= num_bytes_to_set;
818 :
819 : /* If no more regions left, break. */
820 30 : if( ++region_idx==vm->input_mem_regions_cnt ) {
821 6 : break;
822 6 : }
823 :
824 : /* Check that new region is writable. */
825 24 : if( FD_UNLIKELY( !vm->input_mem_regions[ region_idx ].is_writable ) ) {
826 3 : break;
827 3 : }
828 :
829 : /* If new region crosses into/out of account region, error out. */
830 21 : if( FD_UNLIKELY( vm->input_mem_regions[ region_idx ].is_acct_data !=
831 21 : vm->input_mem_regions[ region_idx-1UL ].is_acct_data && sz ) ) {
832 0 : FD_VM_ERR_FOR_LOG_SYSCALL( vm, FD_VM_SYSCALL_ERR_INVALID_LENGTH );
833 0 : return FD_VM_SYSCALL_ERR_SEGFAULT;
834 0 : }
835 :
836 : /* Move haddr to next region. */
837 21 : haddr = (uchar*)vm->input_mem_regions[ region_idx ].haddr;
838 21 : bytes_in_cur_region = vm->input_mem_regions[ region_idx ].region_sz;
839 21 : }
840 :
841 : /* If we were not able to successfully set all the bytes, throw an error. */
842 9 : if( FD_UNLIKELY( sz>0 ) ) {
843 3 : FD_VM_ERR_FOR_LOG_EBPF( vm, FD_VM_ERR_EBPF_ACCESS_VIOLATION );
844 3 : return FD_VM_SYSCALL_ERR_SEGFAULT;
845 3 : }
846 9 : }
847 18 : return FD_VM_SUCCESS;
848 27 : }
|