LCOV - code coverage report
Current view: top level - flamenco/vm/syscall - fd_vm_syscall_util.c (source / functions) Hit Total Coverage
Test: cov.lcov Lines: 329 371 88.7 %
Date: 2025-01-08 12:08:44 Functions: 12 13 92.3 %

          Line data    Source code
       1             : #include "fd_vm_syscall.h"
       2             : 
       3             : #include "../../../ballet/base64/fd_base64.h"
       4             : #include "../../../ballet/utf8/fd_utf8.h"
       5             : #include "../../runtime/sysvar/fd_sysvar.h"
       6             : #include "../../runtime/sysvar/fd_sysvar_clock.h"
       7             : #include "../../runtime/sysvar/fd_sysvar_epoch_schedule.h"
       8             : #include "../../runtime/sysvar/fd_sysvar_fees.h"
       9             : #include "../../runtime/context/fd_exec_txn_ctx.h"
      10             : #include "../../runtime/context/fd_exec_instr_ctx.h"
      11             : #include "../../runtime/fd_account.h"
      12             : 
      13             : int
      14             : fd_vm_syscall_abort( FD_PARAM_UNUSED void *  _vm,
      15             :                      FD_PARAM_UNUSED ulong   r1,
      16             :                      FD_PARAM_UNUSED ulong   r2,
      17             :                      FD_PARAM_UNUSED ulong   r3,
      18             :                      FD_PARAM_UNUSED ulong   r4,
      19             :                      FD_PARAM_UNUSED ulong   r5,
      20          99 :                      FD_PARAM_UNUSED ulong * _ret ) {
      21             :   /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/mod.rs#L630 */
      22          99 :   fd_vm_t * vm = (fd_vm_t *)_vm;
      23          99 :   FD_VM_ERR_FOR_LOG_SYSCALL( vm, FD_VM_SYSCALL_ERR_ABORT );
      24          99 :   return FD_VM_SYSCALL_ERR_ABORT;
      25          99 : }
      26             : 
      27             : /* FD_TRANSLATE_STRING returns a read only pointer to the host address of
      28             :    a valid utf8 string, or it errors.
      29             : 
      30             :    Analogous of Agave's translate_string_and_do().
      31             :    https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/mod.rs#L601
      32             : 
      33             :    As of v0.2.6, the only two usages are in syscall panic and syscall log. */
      34         891 : #define FD_TRANSLATE_STRING( vm, vaddr, msg_sz ) (__extension__({                          \
      35         891 :     char const * msg = FD_VM_MEM_SLICE_HADDR_LD( vm, vaddr, FD_VM_ALIGN_RUST_U8, msg_sz ); \
      36         891 :     if( FD_UNLIKELY( !fd_utf8_verify( msg, msg_sz ) ) ) {                                  \
      37           6 :       FD_VM_ERR_FOR_LOG_SYSCALL( vm, FD_VM_SYSCALL_ERR_INVALID_STRING );                   \
      38           6 :       return FD_VM_SYSCALL_ERR_INVALID_STRING;                                             \
      39           6 :     }                                                                                      \
      40         891 :     msg;                                                                                   \
      41         885 : }))
      42             : 
      43             : int
      44             : fd_vm_syscall_sol_panic( /**/            void *  _vm,
      45             :                          /**/            ulong   file_vaddr,
      46             :                          /**/            ulong   file_sz,
      47             :                          /**/            ulong   line,
      48             :                          /**/            ulong   column,
      49             :                          FD_PARAM_UNUSED ulong   r5,
      50          33 :                          FD_PARAM_UNUSED ulong * _ret ) {
      51          33 :   fd_vm_t * vm = (fd_vm_t *)_vm;
      52             : 
      53             :   /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/mod.rs#L637
      54             : 
      55             :      Note: this syscall is not used by the Rust SDK, only by the C SDK.
      56             :      Rust transforms `panic!()` into a log, followed by an abort.
      57             :      It's unclear if this syscall actually makes any sense... */
      58          33 :   FD_VM_CU_UPDATE( vm, file_sz );
      59             : 
      60             :   /* Validate string */
      61          27 :   FD_TRANSLATE_STRING( vm, file_vaddr, file_sz );
      62             : 
      63             :   /* Note: we truncate the log, ignoring file, line, column.
      64             :      As mentioned above, it's unclear if anyone is even using this syscall,
      65             :      so dealing with the complexity of Agave's log is a waste of time. */
      66           0 :   (void)line;
      67          24 :   (void)column;
      68             : 
      69          24 :   FD_VM_ERR_FOR_LOG_SYSCALL( vm, FD_VM_SYSCALL_ERR_PANIC );
      70          24 :   return FD_VM_SYSCALL_ERR_PANIC;
      71          54 : }
      72             : 
      73             : int
      74             : fd_vm_syscall_sol_log( /**/            void *  _vm,
      75             :                        /**/            ulong   msg_vaddr,
      76             :                        /**/            ulong   msg_sz,
      77             :                        FD_PARAM_UNUSED ulong   r2,
      78             :                        FD_PARAM_UNUSED ulong   r3,
      79             :                        FD_PARAM_UNUSED ulong   r4,
      80         894 :                        /**/            ulong * _ret ) {
      81         894 :   fd_vm_t * vm = (fd_vm_t *)_vm;
      82             : 
      83             :   /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L5 */
      84             : 
      85         894 :   FD_VM_CU_UPDATE( vm, fd_ulong_max( msg_sz, FD_VM_SYSCALL_BASE_COST ) );
      86             : 
      87             :   /* Note: when msg_sz==0, msg can be undefined. fd_log_collector_program_log() handles it.
      88             :      FIXME: Macro invocation in function invocation? */
      89         864 :   fd_log_collector_program_log( vm->instr_ctx, FD_TRANSLATE_STRING( vm, msg_vaddr, msg_sz ), msg_sz );
      90             : 
      91           0 :   *_ret = 0UL;
      92         861 :   return FD_VM_SUCCESS;
      93        1728 : }
      94             : 
      95             : int
      96             : fd_vm_syscall_sol_log_64( void *  _vm,
      97             :                           ulong   r1,
      98             :                           ulong   r2,
      99             :                           ulong   r3,
     100             :                           ulong   r4,
     101             :                           ulong   r5,
     102          15 :                           ulong * _ret ) {
     103          15 :   fd_vm_t * vm = (fd_vm_t *)_vm;
     104             : 
     105             :   /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L37 */
     106             : 
     107          15 :   FD_VM_CU_UPDATE( vm, FD_VM_LOG_64_UNITS );
     108             : 
     109             :   /* Max msg_sz: 46 - 15 + 16*5 = 111 < 127 => we can use printf */
     110           0 :   fd_log_collector_printf_dangerous_max_127( vm->instr_ctx,
     111          12 :     "Program log: 0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%lx", r1, r2, r3, r4, r5 );
     112             : 
     113          12 :   *_ret = 0UL;
     114          12 :   return FD_VM_SUCCESS;
     115          15 : }
     116             : 
     117             : int
     118             : fd_vm_syscall_sol_log_compute_units( /**/            void *  _vm,
     119             :                                      FD_PARAM_UNUSED ulong   r1,
     120             :                                      FD_PARAM_UNUSED ulong   r2,
     121             :                                      FD_PARAM_UNUSED ulong   r3,
     122             :                                      FD_PARAM_UNUSED ulong   r4,
     123             :                                      FD_PARAM_UNUSED ulong   r5,
     124          15 :                                      /**/            ulong * _ret ) {
     125          15 :   fd_vm_t * vm = (fd_vm_t *)_vm;
     126             : 
     127             :   /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L60 */
     128             : 
     129          15 :   FD_VM_CU_UPDATE( vm, FD_VM_SYSCALL_BASE_COST );
     130             : 
     131             :   /* Max msg_sz: 40 - 3 + 20 = 57 < 127 => we can use printf */
     132           0 :   fd_log_collector_printf_dangerous_max_127( vm->instr_ctx,
     133          12 :     "Program consumption: %lu units remaining", vm->cu );
     134             : 
     135          12 :   *_ret = 0UL;
     136          12 :   return FD_VM_SUCCESS;
     137          15 : }
     138             : 
     139             : int
     140             : fd_vm_syscall_sol_log_pubkey( /**/            void *  _vm,
     141             :                               /**/            ulong   pubkey_vaddr,
     142             :                               FD_PARAM_UNUSED ulong   r2,
     143             :                               FD_PARAM_UNUSED ulong   r3,
     144             :                               FD_PARAM_UNUSED ulong   r4,
     145             :                               FD_PARAM_UNUSED ulong   r5,
     146          12 :                               /**/            ulong * _ret ) {
     147          12 :   fd_vm_t * vm = (fd_vm_t *)_vm;
     148             : 
     149             :   /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L84 */
     150             : 
     151          12 :   FD_VM_CU_UPDATE( vm, FD_VM_LOG_PUBKEY_UNITS );
     152             : 
     153          15 :   void const * pubkey = FD_VM_MEM_HADDR_LD( vm, pubkey_vaddr, FD_VM_ALIGN_RUST_PUBKEY, sizeof(fd_pubkey_t) );
     154             : 
     155           0 :   char msg[ FD_BASE58_ENCODED_32_SZ ]; ulong msg_sz;
     156          15 :   if( FD_UNLIKELY( fd_base58_encode_32( pubkey, &msg_sz, msg )==NULL ) ) {
     157           0 :     return FD_VM_SYSCALL_ERR_INVALID_STRING;
     158           0 :   }
     159             : 
     160           3 :   fd_log_collector_program_log( vm->instr_ctx, msg, msg_sz );
     161             : 
     162           3 :   *_ret = 0UL;
     163           3 :   return FD_VM_SUCCESS;
     164          15 : }
     165             : 
     166             : int
     167             : fd_vm_syscall_sol_log_data( /**/            void *  _vm,
     168             :                             /**/            ulong   slice_vaddr,
     169             :                             /**/            ulong   slice_cnt,
     170             :                             FD_PARAM_UNUSED ulong   r3,
     171             :                             FD_PARAM_UNUSED ulong   r4,
     172             :                             FD_PARAM_UNUSED ulong   r5,
     173          81 :                             /**/            ulong * _ret ) {
     174          81 :   fd_vm_t * vm = (fd_vm_t *)_vm;
     175             : 
     176             :   /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L109
     177             : 
     178             :      Note: this is implemented following Agave's perverse behavior.
     179             :      We need to loop the slice multiple times to match the exact error,
     180             :      first compute budget, then memory mapping.
     181             :      And finally we can loop to log. */
     182             : 
     183             :   /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L121 */
     184             : 
     185          81 :   FD_VM_CU_UPDATE( vm, FD_VM_SYSCALL_BASE_COST );
     186             : 
     187             :   /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L123-L128 */
     188             : 
     189         156 :   fd_vm_vec_t const * slice = (fd_vm_vec_t const *)FD_VM_MEM_SLICE_HADDR_LD( vm, slice_vaddr, FD_VM_ALIGN_RUST_SLICE_U8_REF,
     190         156 :     fd_ulong_sat_mul( slice_cnt, sizeof(fd_vm_vec_t) ) );
     191             : 
     192             :   /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L130-L135 */
     193             : 
     194          78 :   FD_VM_CU_UPDATE( vm, fd_ulong_sat_mul( FD_VM_SYSCALL_BASE_COST, slice_cnt ) );
     195             : 
     196             :   /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L136-L141 */
     197             : 
     198        6258 :   for( ulong i=0UL; i<slice_cnt; i++ ) {
     199        6183 :     FD_VM_CU_UPDATE( vm, slice[i].len );
     200        6180 :   }
     201             : 
     202             :   /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L145-L152 */
     203             : 
     204          75 :   ulong msg_sz = 14UL; /* "Program data: ", with space */
     205        6243 :   for( ulong i=0UL; i<slice_cnt; i++ ) {
     206        6171 :     ulong cur_len = slice[i].len;
     207             :     /* This fails the syscall in case of memory mapping issues */
     208       12339 :     FD_VM_MEM_SLICE_HADDR_LD( vm, slice[i].addr, FD_VM_ALIGN_RUST_U8, cur_len );
     209             :     /* Every buffer will be base64 encoded + space separated */
     210           0 :     msg_sz += (slice[i].len + 2)/3*4 + (i > 0);
     211       12339 :   }
     212             : 
     213             :   /* https://github.com/anza-xyz/agave/blob/v2.0.6/programs/bpf_loader/src/syscalls/logging.rs#L156 */
     214             : 
     215          72 :   char msg[ FD_LOG_COLLECTOR_MAX ];
     216          72 :   ulong bytes_written = fd_log_collector_check_and_truncate( &vm->instr_ctx->txn_ctx->log_collector, msg_sz );
     217          72 :   if( FD_LIKELY( bytes_written < ULONG_MAX ) ) {
     218          63 :     fd_memcpy( msg, "Program data: ", 14 );
     219          63 :     char * buf = msg + 14;
     220             : 
     221        3147 :     for( ulong i=0UL; i<slice_cnt; i++ ) {
     222        3084 :       ulong cur_len = slice[i].len;
     223        6168 :       void const * bytes = FD_VM_MEM_SLICE_HADDR_LD( vm, slice[i].addr, FD_VM_ALIGN_RUST_U8, cur_len );
     224             : 
     225        3084 :       if( i ) { *buf = ' '; ++buf; } /* skip first */
     226        6168 :       buf += fd_base64_encode( buf, bytes, cur_len );
     227        6168 :     }
     228          63 :     FD_TEST( (ulong)(buf-msg)==msg_sz );
     229             : 
     230          63 :     fd_log_collector_msg( vm->instr_ctx, msg, msg_sz );
     231          63 :   }
     232             : 
     233          72 :   *_ret = 0;
     234          72 :   return FD_VM_SUCCESS;
     235          72 : }
     236             : 
     237             : int
     238             : fd_vm_syscall_sol_alloc_free( /**/            void *  _vm,
     239             :                               /**/            ulong   sz,
     240             :                               /**/            ulong   free_vaddr,
     241             :                               FD_PARAM_UNUSED ulong   r3,
     242             :                               FD_PARAM_UNUSED ulong   r4,
     243             :                               FD_PARAM_UNUSED ulong   r5,
     244           0 :                               /**/            ulong * _ret ) {
     245           0 :   fd_vm_t * vm = (fd_vm_t *)_vm;
     246             : 
     247             :   /* https://github.com/anza-xyz/agave/blob/v2.0.8/programs/bpf_loader/src/syscalls/mod.rs#L666 */
     248             : 
     249             :   /* This syscall is ... uh ... problematic.  But the community has
     250             :      already recognized this and deprecated it:
     251             : 
     252             :      https://github.com/solana-labs/solana/blob/v1.17.23/sdk/src/feature_set.rs#L846
     253             : 
     254             :      Unfortunately, old code never dies so, practically, this will need
     255             :      to be supported until the heat death of the universe.
     256             : 
     257             :      The most serious issue is that there is nothing to stop VM code
     258             :      making a decision based on the _location_ of the returned
     259             :      allocation.  If different validator implementations use different
     260             :      allocator algorithms, though each implementation would behave
     261             :      functionally correct in isolation, the VM code that uses it would
     262             :      actually break consensus.
     263             : 
     264             :      As a result, every validator needs to use a bit-for-bit identical
     265             :      allocation algorithm.  Fortunately, Solana is just using a basic
     266             :      bump allocator:
     267             : 
     268             :      https://github.com/solana-labs/solana/blob/v1.17.23/program-runtime/src/invoke_context.rs#L122-L148
     269             : 
     270             :      vm->heap_{sz,max} and the below replicate this exactly.
     271             : 
     272             :      Another major issue is that this alloc doesn't always conform
     273             :      typical malloc/free semantics (e.g. C/C++ requires malloc to have
     274             :      an alignment safe for primitive types ... 8 for the Solana machine
     275             :      model).  This is clearly to support backward compat with older VM
     276             :      code (though ideally a malloc syscall should have behaved like ...
     277             :      well ... malloc from day 1).  So the alignment behavior below is a
     278             :      bug-for-bug replication of that:
     279             : 
     280             :      https://github.com/solana-labs/solana/blob/v1.17.23/programs/bpf_loader/src/syscalls/mod.rs#L645-L681
     281             :      https://github.com/solana-labs/solana/blob/v1.17.23/sdk/program/src/entrypoint.rs#L265-L266
     282             : 
     283             :      More generally and already ranted about elsewhere, any code that
     284             :      uses malloc/free style dynamic allocation is inherently broken.  So
     285             :      this syscall should have never existed in the first place ... it
     286             :      just feeds the trolls.  The above is just additional implementation
     287             :      horror because people consistent think malloc/free is much simpler
     288             :      than it actually is.  This is also an example of how quickly
     289             :      mistakes fossilize and become a thorn-in-the-side forever.
     290             : 
     291             :      IMPORTANT SAFETY TIP!  heap_start must be non zero and both
     292             :      heap_start and heap_end should have an alignment of at least 8.
     293             :      This existing runtime policies around heap implicitly satisfy this.
     294             : 
     295             :      IMPORTANT SAFETY TIP!  The specification for Rust's align_offset
     296             :      doesn't seem to provide a strong guarantee that it will return the
     297             :      minimal positive offset necessary to align pointers.  It is
     298             :      possible for a "conforming" Rust compiler to break consensus by
     299             :      using a different align_offset implementation that aligned pointer
     300             :      between different compilations of the Solana validator and the
     301             :      below. */
     302             : 
     303             :   /* https://github.com/anza-xyz/agave/blob/v2.0.8/programs/bpf_loader/src/syscalls/mod.rs#L676-L680 */
     304             : 
     305           0 :   ulong align = fd_vm_is_check_align_enabled( vm ) ? 8UL : FD_VM_ALIGN_RUST_U8;
     306             : 
     307             :   /* https://github.com/anza-xyz/agave/blob/v2.0.8/programs/bpf_loader/src/syscalls/mod.rs#L681-L683
     308             :      Nothing to do. This section can't error, see:
     309             :      https://doc.rust-lang.org/1.81.0/src/core/alloc/layout.rs.html#70
     310             :      https://doc.rust-lang.org/1.81.0/src/core/alloc/layout.rs.html#100 */
     311             : 
     312             : 
     313             :   /* https://github.com/anza-xyz/agave/blob/v2.0.8/programs/bpf_loader/src/syscalls/mod.rs#L684
     314             :      Nothing to do.
     315             :      TODO: unclear if it throw InstructionError::CallDepth
     316             :      https://github.com/anza-xyz/agave/blob/v2.0.8/program-runtime/src/invoke_context.rs#L662 */
     317             : 
     318             :   /* https://github.com/anza-xyz/agave/blob/v2.0.8/programs/bpf_loader/src/syscalls/mod.rs#L685-L693 */
     319             : 
     320             :   /* Non-zero free address implies that this is a free() call.  Since
     321             :      this is a bump allocator, free is a no-op. */
     322           0 :   if( FD_UNLIKELY( free_vaddr ) ) {
     323           0 :     *_ret = 0UL;
     324           0 :     return FD_VM_SUCCESS;
     325           0 :   }
     326             : 
     327             : 
     328           0 :   ulong heap_sz    = fd_ulong_align_up( vm->heap_sz, align                           );
     329           0 :   ulong heap_vaddr = fd_ulong_sat_add ( heap_sz,     FD_VM_MEM_MAP_HEAP_REGION_START );
     330           0 :   /**/  heap_sz    = fd_ulong_sat_add ( heap_sz,     sz                              );
     331             : 
     332           0 :   if( FD_UNLIKELY( heap_sz > vm->heap_max ) ) { /* Not enough free memory */
     333           0 :     *_ret = 0UL;
     334           0 :     return FD_VM_SUCCESS;
     335           0 :   }
     336             : 
     337           0 :   vm->heap_sz = heap_sz;
     338             : 
     339           0 :   *_ret = heap_vaddr;
     340           0 :   return FD_VM_SUCCESS;
     341           0 : }
     342             : 
     343             : /* https://github.com/anza-xyz/agave/blob/v2.0.8/programs/bpf_loader/src/syscalls/mem_ops.rs#L145 */
     344             : int
     345             : fd_vm_memmove( fd_vm_t * vm,
     346             :                ulong     dst_vaddr,
     347             :                ulong     src_vaddr,
     348        6051 :                ulong     sz ) {
     349        6051 :   if( FD_UNLIKELY( !sz ) ) {
     350           0 :     return FD_VM_SUCCESS;
     351           0 :   }
     352             : 
     353        6051 :   if( !vm->direct_mapping ) {
     354        5532 :     void *       dst = FD_VM_MEM_HADDR_ST( vm, dst_vaddr, FD_VM_ALIGN_RUST_U8, sz );
     355       16572 :     void const * src = FD_VM_MEM_HADDR_LD( vm, src_vaddr, FD_VM_ALIGN_RUST_U8, sz );
     356           0 :     memmove( dst, src, sz );
     357       16572 :   } else {
     358             :     /* If the src and dst vaddrs overlap and src_vaddr < dst_vaddr, Agave iterates through input regions backwards
     359             :        to maintain correct memmove behavior for overlapping cases. Although this logic should only apply to the src and dst
     360             :        vaddrs being in the input data region (since that is the only possible case you could have overlapping, chunked-up memmoves), 
     361             :        Agave will iterate backwards in ANY region. If it eventually reaches the end of a region after iterating backwards and 
     362             :        hits an access violation, the bytes from [region_begin, start_vaddr] will still be written to, causing fuzzing mismatches. 
     363             :        In this case, if we didn't have the reverse flag, we would have thrown an access violation before any bytes were copied. 
     364             :        The same logic applies to memmoves that go past the high end of a region - reverse iteration logic would throw an access 
     365             :        violation before any bytes were copied, while the current logic would copy the bytes until the end of the region.
     366             :        https://github.com/anza-xyz/agave/blob/v2.1.0/programs/bpf_loader/src/syscalls/mem_ops.rs#L184 */
     367         519 :     uchar reverse = !!( dst_vaddr >= src_vaddr && dst_vaddr < src_vaddr + sz );
     368             : 
     369             :     /* In reverse calculations, start from the rightmost vaddr that will be accessed (note the - 1). */
     370         519 :     ulong dst_vaddr_begin = reverse ? fd_ulong_sat_add( dst_vaddr, sz - 1UL ) : dst_vaddr;
     371         519 :     ulong src_vaddr_begin = reverse ? fd_ulong_sat_add( src_vaddr, sz - 1UL ) : src_vaddr;
     372             : 
     373             :     /* Find the correct src and dst haddrs to start operating from. If the src or dst vaddrs
     374             :        belong to the input data region (4), keep track of region statistics to memmove in chunks. */
     375         519 :     ulong   dst_region                  = FD_VADDR_TO_REGION( dst_vaddr_begin );
     376         519 :     uchar   dst_is_input_mem_region     = ( dst_region==4UL );
     377         519 :     ulong   dst_offset                  = dst_vaddr_begin & FD_VM_OFFSET_MASK;
     378         519 :     ulong   dst_region_idx              = 0UL;
     379         519 :     ulong   dst_bytes_rem_in_cur_region;
     380         519 :     uchar * dst_haddr;
     381         519 :     if( dst_is_input_mem_region ) {
     382         231 :       FD_VM_MEM_HADDR_AND_REGION_IDX_FROM_INPUT_REGION_CHECKED( vm, dst_offset, dst_region_idx, dst_haddr );
     383         219 :       if( FD_UNLIKELY( !vm->input_mem_regions[ dst_region_idx ].is_writable ) ) {
     384         180 :         FD_VM_ERR_FOR_LOG_EBPF( vm, FD_VM_ERR_EBPF_ACCESS_VIOLATION );
     385         180 :         return FD_VM_SYSCALL_ERR_SEGFAULT;
     386         180 :       }
     387          39 :       if( FD_UNLIKELY( reverse ) ) {
     388             :         /* Bytes remaining between region begin and current position (+ 1 for inclusive region beginning). */
     389           6 :         dst_bytes_rem_in_cur_region = fd_ulong_sat_sub( dst_offset + 1UL, vm->input_mem_regions[ dst_region_idx ].vaddr_offset );
     390          33 :       } else {
     391             :         /* Bytes remaining between current position and region end. */
     392          33 :         dst_bytes_rem_in_cur_region = fd_ulong_sat_sub( vm->input_mem_regions[ dst_region_idx ].region_sz, ( dst_offset - vm->input_mem_regions[ dst_region_idx ].vaddr_offset ) );
     393          33 :       }
     394         288 :     } else {
     395         288 :       dst_haddr = (uchar*)FD_VM_MEM_HADDR_ST_NO_SZ_CHECK( vm, dst_vaddr_begin, FD_VM_ALIGN_RUST_U8 );
     396             : 
     397         246 :       if( FD_UNLIKELY( reverse ) ) {
     398             :         /* Bytes remaining is minimum of the offset from the beginning of the current 
     399             :            region (+1 for inclusive region beginning) and the number of storable bytes in the region. */
     400           6 :         dst_bytes_rem_in_cur_region = fd_ulong_min( vm->region_st_sz[ dst_region ], dst_offset + 1UL );
     401             : 
     402         240 :       } else {
     403             :         /* Bytes remaining is the number of writable bytes left in the region */
     404         240 :         dst_bytes_rem_in_cur_region = fd_ulong_sat_sub( vm->region_st_sz[ dst_region ], dst_offset );
     405         240 :       }
     406         246 :     }
     407             : 
     408             :     /* Logic for src vaddr translation is similar to above excluding any writable checks. */
     409         285 :     ulong   src_region                  = FD_VADDR_TO_REGION( src_vaddr_begin );
     410         285 :     uchar   src_is_input_mem_region     = ( src_region==4UL );
     411         285 :     ulong   src_offset                  = src_vaddr_begin & FD_VM_OFFSET_MASK;
     412         285 :     ulong   src_region_idx              = 0UL;
     413         285 :     ulong   src_bytes_rem_in_cur_region;
     414         285 :     uchar * src_haddr;
     415         285 :     if( src_is_input_mem_region ) {
     416         144 :       FD_VM_MEM_HADDR_AND_REGION_IDX_FROM_INPUT_REGION_CHECKED( vm, src_offset, src_region_idx, src_haddr );
     417         144 :       if( FD_UNLIKELY( reverse ) ) {
     418           6 :         src_bytes_rem_in_cur_region = fd_ulong_sat_sub( src_offset + 1UL, vm->input_mem_regions[ src_region_idx ].vaddr_offset );
     419         138 :       } else {
     420         138 :         src_bytes_rem_in_cur_region = fd_ulong_sat_sub( vm->input_mem_regions[ src_region_idx ].region_sz, ( src_offset - vm->input_mem_regions[ src_region_idx ].vaddr_offset ) );
     421         138 :       }
     422         144 :     } else {
     423         423 :       src_haddr = (uchar*)FD_VM_MEM_HADDR_LD_NO_SZ_CHECK( vm, src_vaddr_begin, FD_VM_ALIGN_RUST_U8 );
     424             : 
     425         141 :       if( FD_UNLIKELY( reverse ) ) {
     426           6 :         src_bytes_rem_in_cur_region = fd_ulong_min( vm->region_ld_sz[ src_region ], src_offset + 1UL );
     427             : 
     428         135 :       } else {
     429         135 :         src_bytes_rem_in_cur_region = fd_ulong_sat_sub( vm->region_ld_sz[ src_region ], src_offset );
     430         135 :       }
     431         423 :     }
     432             : 
     433             :     /* Short circuit: if the number of copyable bytes stays within all memory regions, 
     434             :        just memmove and return. This is a majority case in mainnet, devnet, and testnet. 
     435             :        Someone would have to be very crafty and clever to construct a transaction that
     436             :        deploys and invokes a custom program that does not fall into this branch. */
     437         285 :     if( FD_LIKELY( sz<=dst_bytes_rem_in_cur_region && sz<=src_bytes_rem_in_cur_region ) ) {
     438          78 :       if( FD_UNLIKELY( reverse ) ) {
     439             :         /* In the reverse iteration case, the haddrs point to the end of the region here. Since the 
     440             :            above checks guarantee that there are enough bytes left in the src and dst regions to do
     441             :            a direct memmove, we can just subtract (sz-1) from the haddrs, memmove, and return. */
     442           3 :         memmove( dst_haddr - sz + 1UL, src_haddr - sz + 1UL, sz );
     443          75 :       } else {
     444             :         /* In normal iteration, the haddrs correspond to the correct starting point for the memcpy,
     445             :            so no further translation has to be done. */
     446          75 :         memmove( dst_haddr, src_haddr, sz );
     447          75 :       }
     448          78 :       return FD_VM_SUCCESS;
     449          78 :     }
     450             :   
     451             :     /* Copy over the bytes from each region in chunks. */
     452         510 :     while( sz>0UL ) {
     453             :       /* End of region case */
     454         498 :       if( FD_UNLIKELY( dst_bytes_rem_in_cur_region==0UL ) ) {
     455             :         /* Only proceed if:
     456             :             - We are in the input memory region
     457             :             - There are remaining input memory regions to copy from (for both regular and reverse iteration orders)
     458             :             - The next input memory region is writable
     459             :            Fail otherwise. */
     460          39 :         if( FD_LIKELY( !reverse && 
     461          39 :                         dst_is_input_mem_region && 
     462          39 :                         dst_region_idx+1UL<vm->input_mem_regions_cnt &&
     463          39 :                         vm->input_mem_regions[ dst_region_idx+1UL ].is_writable ) ) {
     464             :           /* In normal iteration, we move the haddr to the beginning of the next region. */
     465           9 :           dst_region_idx++;
     466           9 :           dst_haddr = (uchar*)vm->input_mem_regions[ dst_region_idx ].haddr;
     467          30 :         } else if( FD_LIKELY( reverse && 
     468          30 :                               dst_region_idx>0UL &&
     469          30 :                               vm->input_mem_regions[ dst_region_idx-1UL ].is_writable ) ) {
     470             :           /* Note that when reverse iterating, we set the haddr to the END of the PREVIOUS region. */
     471           3 :           dst_region_idx--;
     472           3 :           dst_haddr = (uchar*)vm->input_mem_regions[ dst_region_idx ].haddr + vm->input_mem_regions[ dst_region_idx ].region_sz - 1UL;
     473          27 :         } else {
     474          27 :           FD_VM_ERR_FOR_LOG_EBPF( vm, FD_VM_ERR_EBPF_ACCESS_VIOLATION );
     475          27 :           return FD_VM_SYSCALL_ERR_SEGFAULT;
     476          27 :         }
     477          12 :         dst_bytes_rem_in_cur_region = vm->input_mem_regions[ dst_region_idx ].region_sz;
     478          12 :       }
     479             : 
     480         471 :       if( FD_UNLIKELY( src_bytes_rem_in_cur_region==0UL ) ) {
     481             :         /* Same as above, except no writable checks. */
     482         261 :         if( FD_LIKELY( !reverse && 
     483         261 :                         src_is_input_mem_region && 
     484         261 :                         src_region_idx+1UL<vm->input_mem_regions_cnt ) ) {
     485          78 :           src_region_idx++;
     486          78 :           src_haddr = (uchar*)vm->input_mem_regions[ src_region_idx ].haddr;
     487         183 :         } else if( FD_LIKELY( reverse && src_region_idx>0UL ) ) {
     488          15 :           src_region_idx--;
     489          15 :           src_haddr = (uchar*)vm->input_mem_regions[ src_region_idx ].haddr + vm->input_mem_regions[ src_region_idx ].region_sz - 1UL;
     490         168 :         } else {
     491         168 :           FD_VM_ERR_FOR_LOG_EBPF( vm, FD_VM_ERR_EBPF_ACCESS_VIOLATION );
     492         168 :           return FD_VM_SYSCALL_ERR_SEGFAULT;
     493         168 :         }
     494          93 :         src_bytes_rem_in_cur_region = vm->input_mem_regions[ src_region_idx ].region_sz;
     495          93 :       }
     496             : 
     497             :       /* Number of bytes to operate on in this iteration is the min of:
     498             :          - number of bytes left to copy
     499             :          - bytes left in the current src region
     500             :          - bytes left in the current dst region */
     501         303 :       ulong num_bytes_to_copy = fd_ulong_min( sz, fd_ulong_min( src_bytes_rem_in_cur_region, dst_bytes_rem_in_cur_region ) );
     502         303 :       if( FD_UNLIKELY( reverse ) ) {
     503          24 :         memmove( dst_haddr - num_bytes_to_copy + 1UL, src_haddr - num_bytes_to_copy + 1UL, num_bytes_to_copy );
     504          24 :         dst_haddr -= num_bytes_to_copy;
     505          24 :         src_haddr -= num_bytes_to_copy;
     506         279 :       } else {
     507         279 :         memmove( dst_haddr, src_haddr, num_bytes_to_copy );
     508         279 :         dst_haddr += num_bytes_to_copy;
     509         279 :         src_haddr += num_bytes_to_copy;
     510         279 :       }
     511             : 
     512             :       /* Update size trackers */
     513         303 :       sz                          -= num_bytes_to_copy;
     514         303 :       src_bytes_rem_in_cur_region -= num_bytes_to_copy;
     515         303 :       dst_bytes_rem_in_cur_region -= num_bytes_to_copy;
     516         303 :     }
     517         207 :   }
     518             : 
     519        5535 :   return FD_VM_SUCCESS;
     520        6051 : }
     521             : 
     522             : /* https://github.com/anza-xyz/agave/blob/v2.0.8/programs/bpf_loader/src/syscalls/mem_ops.rs#L41 */
     523             : int
     524             : fd_vm_syscall_sol_memmove( /**/            void *  _vm,
     525             :                            /**/            ulong   dst_vaddr,
     526             :                            /**/            ulong   src_vaddr,
     527             :                            /**/            ulong   sz,
     528             :                            FD_PARAM_UNUSED ulong   r4,
     529             :                            FD_PARAM_UNUSED ulong   r5,
     530         222 :                            /**/            ulong * _ret ) {
     531         222 :   *_ret = 0;
     532         222 :   fd_vm_t * vm = (fd_vm_t *)_vm;
     533             : 
     534         222 :   FD_VM_CU_MEM_OP_UPDATE( vm, sz );
     535             : 
     536             :   /* No overlap check for memmove. */
     537           0 :   return fd_vm_memmove( vm, dst_vaddr, src_vaddr, sz );
     538         222 : }
     539             : 
     540             : /* https://github.com/anza-xyz/agave/blob/v2.0.8/programs/bpf_loader/src/syscalls/mem_ops.rs#L18 */
     541             : int
     542             : fd_vm_syscall_sol_memcpy( /**/            void *  _vm,
     543             :                           /**/            ulong   dst_vaddr,
     544             :                           /**/            ulong   src_vaddr,
     545             :                           /**/            ulong   sz,
     546             :                           FD_PARAM_UNUSED ulong   r4,
     547             :                           FD_PARAM_UNUSED ulong   r5,
     548        5904 :                           /**/            ulong * _ret ) {
     549        5904 :   *_ret = 0;
     550        5904 :   fd_vm_t * vm = (fd_vm_t *)_vm;
     551             : 
     552        5904 :   FD_VM_CU_MEM_OP_UPDATE( vm, sz );
     553             : 
     554             :   /* Exact same as memmove, except also check overlap.
     555             :      https://github.com/anza-xyz/agave/blob/master/programs/bpf_loader/src/syscalls/mem_ops.rs#L31 */
     556        5901 :   FD_VM_MEM_CHECK_NON_OVERLAPPING( vm, src_vaddr, sz, dst_vaddr, sz );
     557             : 
     558        5829 :   return fd_vm_memmove( vm, dst_vaddr, src_vaddr, sz );
     559        5901 : }
     560             : 
     561             : int
     562             : fd_vm_syscall_sol_memcmp( /**/            void *  _vm,
     563             :                           /**/            ulong   m0_vaddr,
     564             :                           /**/            ulong   m1_vaddr,
     565             :                           /**/            ulong   sz,
     566             :                           /**/            ulong   out_vaddr,
     567             :                           FD_PARAM_UNUSED ulong   r5,
     568         582 :                           /**/            ulong * _ret ) {
     569         582 :   *_ret = 0;
     570         582 :   fd_vm_t * vm = (fd_vm_t *)_vm;
     571             : 
     572             :   /* https://github.com/anza-xyz/agave/blob/master/programs/bpf_loader/src/syscalls/mem_ops.rs#L59 */
     573             : 
     574         582 :   FD_VM_CU_MEM_OP_UPDATE( vm, sz );
     575             : 
     576             :   /* Note: though this behaves like a normal C-style memcmp, we can't
     577             :      use the compilers / libc memcmp directly because the specification
     578             :      doesn't provide strong enough guarantees about the return value (it
     579             :      only promises the sign). */
     580             : 
     581         582 :   if( !FD_FEATURE_ACTIVE( vm->instr_ctx->slot_ctx, bpf_account_data_direct_mapping ) ) {
     582        1116 :     uchar const * m0 = (uchar const *)FD_VM_MEM_SLICE_HADDR_LD( vm, m0_vaddr, FD_VM_ALIGN_RUST_U8, sz );
     583        1116 :     uchar const * m1 = (uchar const *)FD_VM_MEM_SLICE_HADDR_LD( vm, m1_vaddr, FD_VM_ALIGN_RUST_U8, sz );
     584             : 
     585             :     /* Silly that this doesn't use r0 to return ... slower, more edge
     586             :       case, different from libc style memcmp, harder to callers to use,
     587             :       etc ... probably too late to do anything about it now ... sigh */
     588             : 
     589         558 :     void * _out = FD_VM_MEM_HADDR_ST( vm, out_vaddr, FD_VM_ALIGN_RUST_I32, 4UL );
     590             : 
     591           0 :     int out = 0;
     592       11760 :     for( ulong i=0UL; i<sz; i++ ) {
     593       11466 :       int i0 = (int)m0[i];
     594       11466 :       int i1 = (int)m1[i];
     595       11466 :       if( i0!=i1 ) {
     596         264 :         out = i0 - i1;
     597         264 :         break;
     598         264 :       }
     599       11466 :     }
     600             : 
     601         558 :     fd_memcpy( _out, &out, 4UL ); /* Sigh ... see note above (and might be unaligned ... double sigh) */
     602             : 
     603         558 :     return FD_VM_SUCCESS;
     604        1116 :   } else {
     605             :     /* In the case that direct mapping is enabled, the behavior for memcmps
     606             :        differ significantly from the non-dm case. The key difference is that
     607             :        invalid loads will instantly lead to errors in the non-dm case. However,
     608             :        when direct mapping is enabled, we will first try to memcmp the largest
     609             :        size valid chunk first, and will exit successfully if a difference is
     610             :        found without aborting from the VM. A chunk is defined as the largest
     611             :        valid vaddr range in both memory regions that doesn't span multiple
     612             :        regions.
     613             :        
     614             :        Example:
     615             :        fd_vm_syscall_sol_memcmp( vm, m0_addr : 0x4000, m1_vaddr : 0x2000, 0x200, ... );
     616             :        m0's region: m0_addr 0x4000 -> 0x4000 + 0x50  (region sz 0x50)
     617             :        m1's region: m1_addr 0x2000 -> 0x2000 + 0x100 (region sz 0x100)
     618             :        sz: 0x200
     619             : 
     620             :        Case 1: 0x4000 -> 0x4050 does     have the same bytes as 0x2000 -> 0x2050
     621             :        Case 2: 0x4000 -> 0x4050 does NOT have the same bytes as 0x2000 -> 0x2050
     622             : 
     623             :        Pre-DM:
     624             :        This will fail out before any bytes are compared because the memory
     625             :        translation is done first.
     626             : 
     627             :        Post-DM:
     628             :        For case 1, the memcmp will return an error and the VM will exit because
     629             :        the memcmp will eventually try to access 0x4051 which is invalid. First
     630             :        0x50 bytes are compared, but the next chunk will lead to an invalid
     631             :        access.
     632             : 
     633             :        For case 2, the memcmp will first translate the first 0x50 bytes and will
     634             :        see that the bytes are not the same. This will lead to the syscall 
     635             :        exiting out successfully without detecting the access violation.
     636             : 
     637             :       https://github.com/anza-xyz/agave/blob/v2.0.10/programs/bpf_loader/src/syscalls/mem_ops.rs#L213
     638             :        */
     639             : 
     640          24 :     void * _out = FD_VM_MEM_HADDR_ST( vm, out_vaddr, FD_VM_ALIGN_RUST_I32, 4UL );
     641           0 :     int     out = 0;
     642             : 
     643             :     /* Lookup host address chunks. Try to do a standard memcpy if the regions
     644             :        do not cross memory regions. The translation logic is different if the
     645             :        the virtual address region is the input region vs. not. See the comment 
     646             :        in fd_bpf_loader_serialization for more details on how the input
     647             :        region is different from other regions. The input data region will try 
     648             :        to lookup the number of remaining bytes in the specific data region. If 
     649             :        the memory access is not in the input data region, assume the bytes in 
     650             :        the current region are bound by the size of the remaining bytes in the 
     651             :        region. */
     652             : 
     653          21 :     ulong   m0_region              = FD_VADDR_TO_REGION( m0_vaddr );
     654          21 :     ulong   m0_offset              = m0_vaddr & FD_VM_OFFSET_MASK;
     655          21 :     ulong   m0_region_idx          = 0UL;
     656          21 :     ulong   m0_bytes_in_cur_region = sz;
     657          21 :     uchar * m0_haddr               = NULL;
     658          21 :     if( m0_region==4UL ) {
     659           9 :       m0_region_idx          = fd_vm_get_input_mem_region_idx( vm, m0_offset );
     660           9 :       m0_haddr               = (uchar*)(vm->input_mem_regions[ m0_region_idx ].haddr + m0_offset - vm->input_mem_regions[ m0_region_idx ].vaddr_offset);
     661           9 :       m0_bytes_in_cur_region = fd_ulong_min( sz, fd_ulong_sat_sub( vm->input_mem_regions[ m0_region_idx ].region_sz,
     662           9 :                                                                         ((ulong)m0_haddr - vm->input_mem_regions[ m0_region_idx ].haddr) ) );
     663          12 :     } else {
     664             :       /* We can safely load a slice of 1 byte here because we know that we will
     665             :          not ever read more than the number of bytes that are left in the
     666             :          region. */
     667          12 :       m0_bytes_in_cur_region = fd_ulong_min( sz, vm->region_ld_sz[ m0_region ] - m0_offset );
     668          24 :       m0_haddr               = (uchar *)FD_VM_MEM_SLICE_HADDR_LD_SZ_UNCHECKED( vm, m0_vaddr, FD_VM_ALIGN_RUST_U8 );
     669          24 :     }
     670             : 
     671          21 :     ulong   m1_region              = FD_VADDR_TO_REGION( m1_vaddr );
     672          21 :     ulong   m1_offset              = m1_vaddr & FD_VM_OFFSET_MASK;
     673          21 :     ulong   m1_region_idx          = 0UL;
     674          21 :     ulong   m1_bytes_in_cur_region = sz;
     675          21 :     uchar * m1_haddr               = NULL;
     676          21 :     if( m1_region==4UL ) {
     677           6 :       m1_region_idx          = fd_vm_get_input_mem_region_idx( vm, m1_offset );
     678           6 :       m1_haddr               = (uchar*)(vm->input_mem_regions[ m1_region_idx ].haddr + m1_offset - vm->input_mem_regions[ m1_region_idx ].vaddr_offset);
     679           6 :       m1_bytes_in_cur_region = fd_ulong_min( sz, fd_ulong_sat_sub( vm->input_mem_regions[ m1_region_idx ].region_sz,
     680           6 :                                                                         ((ulong)m1_haddr - vm->input_mem_regions[ m1_region_idx ].haddr) ) );
     681          15 :     } else {
     682          15 :       m1_bytes_in_cur_region = fd_ulong_min( sz, vm->region_ld_sz[ m1_region ] - m1_offset );
     683          30 :       m1_haddr               = (uchar *)FD_VM_MEM_SLICE_HADDR_LD_SZ_UNCHECKED( vm, m1_vaddr, FD_VM_ALIGN_RUST_U8 );
     684          30 :     }
     685             : 
     686             :     /* Case where the operation spans multiple regions. Copy over the bytes
     687             :        from each region while iterating to the next one. */
     688             :     /* TODO: An optimization would be to memcmp chunks at once */
     689          21 :     ulong m0_idx = 0UL;
     690          21 :     ulong m1_idx = 0UL;
     691        8625 :     for( ulong i=0UL; i<sz; i++ ) {
     692        8622 :       if( FD_UNLIKELY( !m0_bytes_in_cur_region ) ) {
     693             :         /* If the memory is not in the input region or it is the last input
     694             :            memory region, that means that if we don't exit now we will have
     695             :            an access violation. */
     696          12 :         if( FD_UNLIKELY( m0_region!=4UL || ++m0_region_idx>=vm->input_mem_regions_cnt ) ) {
     697           6 :           FD_VM_ERR_FOR_LOG_EBPF( vm, FD_VM_ERR_EBPF_ACCESS_VIOLATION );
     698           6 :           return FD_VM_SYSCALL_ERR_SEGFAULT;
     699           6 :         }
     700             :         /* Otherwise, query the next input region. */
     701           6 :         m0_haddr = (uchar*)vm->input_mem_regions[ m0_region_idx ].haddr;
     702           6 :         m0_idx = 0UL;
     703           6 :         m0_bytes_in_cur_region = vm->input_mem_regions[ m0_region_idx ].region_sz;
     704           6 :       }
     705        8616 :       if( FD_UNLIKELY( !m1_bytes_in_cur_region ) ) {
     706           0 :         if( FD_UNLIKELY( m1_region!=4UL || ++m1_region_idx>=vm->input_mem_regions_cnt ) ) {
     707           0 :           FD_VM_ERR_FOR_LOG_EBPF( vm, FD_VM_ERR_EBPF_ACCESS_VIOLATION );
     708           0 :           return FD_VM_SYSCALL_ERR_SEGFAULT;
     709           0 :         }
     710           0 :         m1_haddr = (uchar*)vm->input_mem_regions[ m1_region_idx ].haddr;
     711           0 :         m1_idx = 0UL;
     712           0 :         m1_bytes_in_cur_region = vm->input_mem_regions[ m1_region_idx ].region_sz;
     713           0 :       }
     714             : 
     715        8616 :       int i0 = (int)m0_haddr[ m0_idx ];
     716        8616 :       int i1 = (int)m1_haddr[ m1_idx ];
     717        8616 :       if( i0!=i1 ) {
     718          12 :         out = i0 - i1;
     719          12 :         break;
     720          12 :       }
     721             : 
     722        8604 :       m0_bytes_in_cur_region--;
     723        8604 :       m1_bytes_in_cur_region--;
     724        8604 :       m0_idx++;
     725        8604 :       m1_idx++;
     726        8604 :     }
     727          15 :     fd_memcpy( _out, &out, 4UL ); /* Sigh ... see note above (and might be unaligned ... double sigh) */
     728          15 :     return FD_VM_SUCCESS;
     729          21 :   }
     730         582 : }
     731             : 
     732             : int
     733             : fd_vm_syscall_sol_memset( /**/            void *  _vm,
     734             :                           /**/            ulong   dst_vaddr,
     735             :                           /**/            ulong   c,
     736             :                           /**/            ulong   sz,
     737             :                           FD_PARAM_UNUSED ulong   r4,
     738             :                           FD_PARAM_UNUSED ulong   r5,
     739         264 :                           /**/            ulong * _ret ) {
     740         264 :   fd_vm_t * vm = (fd_vm_t *)_vm;
     741         264 :   *_ret = 0;
     742             : 
     743             :   /* https://github.com/anza-xyz/agave/blob/master/programs/bpf_loader/src/syscalls/mem_ops.rs#L115 */
     744             : 
     745         264 :   FD_VM_CU_MEM_OP_UPDATE( vm, sz );
     746             : 
     747         264 :   if( FD_UNLIKELY( !sz ) ) {
     748           9 :     return FD_VM_SUCCESS;
     749           9 :   }
     750             : 
     751         255 :   ulong   region = FD_VADDR_TO_REGION( dst_vaddr );
     752         255 :   ulong   offset = dst_vaddr & FD_VM_OFFSET_MASK;
     753         255 :   uchar * haddr;
     754             : 
     755         255 :   int b = (int)(c & 255UL);
     756             : 
     757         255 :   if( !vm->direct_mapping ) {
     758          90 :     haddr = FD_VM_MEM_HADDR_ST( vm, dst_vaddr, FD_VM_ALIGN_RUST_U8, sz );
     759           0 :     fd_memset( haddr, b, sz );
     760         165 :   } else if( region!=4UL ) {
     761             :     /* I acknowledge that this is not an ideal implementation, but Agave will
     762             :        memset as many bytes as possible until it reaches an unwritable section.
     763             :        This is purely just for fuzzing conformance, sigh... */
     764          51 :     haddr = (uchar*)FD_VM_MEM_HADDR_ST_FAST( vm, dst_vaddr );
     765          51 :     ulong bytes_in_cur_region = fd_ulong_sat_sub( vm->region_st_sz[ region ], offset );
     766          51 :     ulong bytes_to_set        = fd_ulong_min( sz, bytes_in_cur_region );
     767          51 :     fd_memset( haddr, b, bytes_to_set );
     768          51 :     if( FD_UNLIKELY( bytes_to_set<sz ) ) {
     769          45 :       FD_VM_ERR_FOR_LOG_EBPF( vm, FD_VM_ERR_EBPF_ACCESS_VIOLATION );
     770          45 :       return FD_VM_SYSCALL_ERR_SEGFAULT;
     771          45 :     }
     772         114 :   } else {
     773             :     /* In this case, we are in the input region AND direct mapping is enabled.
     774             :        Get the haddr and input region and check if it's writable. */
     775         114 :     ulong region_idx;
     776         114 :     FD_VM_MEM_HADDR_AND_REGION_IDX_FROM_INPUT_REGION_CHECKED( vm, offset, region_idx, haddr );
     777           0 :     ulong offset_in_cur_region = offset - vm->input_mem_regions[ region_idx ].vaddr_offset;
     778         114 :     ulong bytes_in_cur_region  = fd_ulong_sat_sub( vm->input_mem_regions[ region_idx ].region_sz, offset_in_cur_region );
     779             : 
     780             :     /* Memset goes into multiple regions. */
     781         174 :     while( sz>0UL ) {
     782             :       /* Check that current region is writable */
     783         174 :       if( FD_UNLIKELY( !vm->input_mem_regions[ region_idx ].is_writable ) ) {
     784          96 :         break;
     785          96 :       }
     786             : 
     787             :       /* Memset bytes */
     788          78 :       ulong num_bytes_to_set = fd_ulong_min( sz, bytes_in_cur_region );
     789          78 :       fd_memset( haddr, b, num_bytes_to_set );
     790          78 :       sz -= num_bytes_to_set;
     791             : 
     792             :       /* If no more regions left, break. */
     793          78 :       if( ++region_idx==vm->input_mem_regions_cnt ) {
     794          18 :         break;
     795          18 :       }
     796             : 
     797             :       /* Move haddr to next region. */
     798          60 :       haddr               = (uchar*)vm->input_mem_regions[ region_idx ].haddr;
     799          60 :       bytes_in_cur_region = vm->input_mem_regions[ region_idx ].region_sz;
     800          60 :     }
     801             : 
     802             :     /* If we were not able to successfully set all the bytes, throw an error. */
     803         114 :     if( FD_UNLIKELY( sz>0 ) ) {
     804         108 :       FD_VM_ERR_FOR_LOG_EBPF( vm, FD_VM_ERR_EBPF_ACCESS_VIOLATION );
     805         108 :       return FD_VM_SYSCALL_ERR_SEGFAULT;
     806         108 :     }
     807         114 :   }
     808          99 :   return FD_VM_SUCCESS;
     809         255 : }

Generated by: LCOV version 1.14