LCOV - code coverage report
Current view: top level - util - fd_util_base.h (source / functions) Hit Total Coverage
Test: cov.lcov Lines: 99 109 90.8 %
Date: 2025-08-05 05:04:49 Functions: 234 4080 5.7 %

          Line data    Source code
       1             : #ifndef HEADER_fd_src_util_fd_util_base_h
       2             : #define HEADER_fd_src_util_fd_util_base_h
       3             : 
       4             : /* Base development environment */
       5             : 
       6             : /* Compiler checks ****************************************************/
       7             : 
       8             : #ifdef __cplusplus
       9             : 
      10             : #if __cplusplus<201703L
      11             : #error "Firedancer requires C++17 or later"
      12             : #endif
      13             : 
      14             : #else
      15             : 
      16             : #if __STDC_VERSION__<201710L
      17             : #error "Firedancer requires C Standard version C17 or later"
      18             : #endif
      19             : 
      20             : #endif //__cplusplus
      21             : 
      22             : /* Build target capabilities ******************************************/
      23             : 
      24             : /* Different build targets often have different levels of support for
      25             :    various language and hardware features.  The presence of various
      26             :    features can be tested at preprocessor, compile, or run time via the
      27             :    below capability macros.
      28             : 
      29             :    Code that does not exploit any of these capabilities written within
      30             :    the base development environment should be broadly portable across a
      31             :    range of build targets ranging from on-chain virtual machines to
      32             :    commodity hosts to custom hardware.
      33             : 
      34             :    As such, highly portable yet high performance code is possible by
      35             :    writing generic implementations that do not exploit any of the below
      36             :    capabilities as a portable fallback along with build target specific
      37             :    optimized implementations that are invoked when the build target
      38             :    supports the appropriate capabilities.
      39             : 
      40             :    The base development itself provide lots of functionality to help
      41             :    with implementing portable fallbacks while making very minimal
      42             :    assumptions about the build targets and zero use of 3rd party
      43             :    libraries (these might make unknown additional assumptions about the
      44             :    build target, including availability of a quality implementation of
      45             :    the library on the build target). */
      46             : 
      47             : /* FD_HAS_HOSTED:  If the build target is hosted (e.g. resides on a host
      48             :    with a POSIX-ish environment ... practically speaking, stdio.h,
      49             :    stdlib.h, unistd.h, et al more or less behave normally ...
      50             :    pedantically XOPEN_SOURCE=700), FD_HAS_HOSTED will be 1.  It will be
      51             :    zero otherwise. */
      52             : 
      53             : #ifndef FD_HAS_HOSTED
      54             : #define FD_HAS_HOSTED 0
      55             : #endif
      56             : 
      57             : /* FD_HAS_ATOMIC:  If the build target supports atomic operations
      58             :    between threads accessing a common memory region (include threads
      59             :    that reside in different processes on a host communicating via a
      60             :    shared memory region with potentially different local virtual
      61             :    mappings).  Practically speaking, does atomic compare-and-swap et al
      62             :    work? */
      63             : 
      64             : #ifndef FD_HAS_ATOMIC
      65             : #define FD_HAS_ATOMIC 0
      66             : #endif
      67             : 
      68             : /* FD_HAS_THREADS:  If the build target supports a POSIX-ish notion of
      69             :    threads (e.g. practically speaking, global variables declared within
      70             :    a compile unit are visible to more than one thread of execution,
      71             :    pthreads.h / threading parts of C standard, the atomics parts of the
      72             :    C standard, ... more or less work normally), FD_HAS_THREADS will be
      73             :    1.  It will be zero otherwise.  FD_HAS_THREADS implies FD_HAS_HOSTED
      74             :    and FD_HAS_ATOMIC. */
      75             : 
      76             : #ifndef FD_HAS_THREADS
      77             : #define FD_HAS_THREADS 0
      78             : #endif
      79             : 
      80             : /* FD_HAS_INT128:  If the build target supports reasonably efficient
      81             :    128-bit wide integer operations, define FD_HAS_INT128 to 1 to enable
      82             :    use of them in implementations. */
      83             : 
      84             : #ifndef FD_HAS_INT128
      85             : #define FD_HAS_INT128 0
      86             : #endif
      87             : 
      88             : /* FD_HAS_DOUBLE:  If the build target supports reasonably efficient
      89             :    IEEE 754 64-bit wide double precision floating point options, define
      90             :    FD_HAS_DOUBLE to 1 to enable use of them in implementations.  Note
      91             :    that even if the build target does not, va_args handling in the C /
      92             :    C++ language requires promotion of a float in an va_arg list to a
      93             :    double.  Thus, C / C++ language that support IEEE 754 float also
      94             :    implies a minimum level of support for double (though not necessarily
      95             :    efficient or IEEE 754).  That is, even if a target does not have
      96             :    FD_HAS_DOUBLE, there might still be limited use of double in va_arg
      97             :    list handling. */
      98             : 
      99             : #ifndef FD_HAS_DOUBLE
     100             : #define FD_HAS_DOUBLE 0
     101             : #endif
     102             : 
     103             : /* FD_HAS_ALLOCA:  If the build target supports fast alloca-style
     104             :    dynamic stack memory allocation (e.g. alloca.h / __builtin_alloca
     105             :    more or less work normally), define FD_HAS_ALLOCA to 1 to enable use
     106             :    of it in implementations. */
     107             : 
     108             : #ifndef FD_HAS_ALLOCA
     109             : #define FD_HAS_ALLOCA 0
     110             : #endif
     111             : 
     112             : /* FD_HAS_X86:  If the build target supports x86 specific features and
     113             :    can benefit from x86 specific optimizations, define FD_HAS_X86.  Code
     114             :    needing more specific target features (Intel / AMD / SSE / AVX2 /
     115             :    AVX512 / etc) can specialize further as necessary with even more
     116             :    precise capabilities (that in turn imply FD_HAS_X86). */
     117             : 
     118             : #ifndef FD_HAS_X86
     119             : #define FD_HAS_X86 0
     120             : #endif
     121             : 
     122             : /* These allow even more precise targeting for X86. */
     123             : 
     124             : /* FD_HAS_SSE indicates the target supports Intel SSE4 style SIMD
     125             :    (basically do the 128-bit wide parts of "x86intrin.h" work).
     126             :    Recommend using the simd/fd_sse.h APIs instead of raw Intel
     127             :    intrinsics for readability and to facilitate portability to non-x86
     128             :    platforms.  Implies FD_HAS_X86. */
     129             : 
     130             : #ifndef FD_HAS_SSE
     131             : #define FD_HAS_SSE 0
     132             : #endif
     133             : 
     134             : /* FD_HAS_AVX indicates the target supports Intel AVX2 style SIMD
     135             :    (basically do the 256-bit wide parts of "x86intrin.h" work).
     136             :    Recommend using the simd/fd_avx.h APIs instead of raw Intel
     137             :    intrinsics for readability and to facilitate portability to non-x86
     138             :    platforms.  Implies FD_HAS_SSE. */
     139             : 
     140             : #ifndef FD_HAS_AVX
     141             : #define FD_HAS_AVX 0
     142             : #endif
     143             : 
     144             : /* FD_HAS_AVX512 indicates the target supports Intel AVX-512 style SIMD
     145             :    (basically do the 512-bit wide parts of "x86intrin.h" work).
     146             :    Recommend using the simd/fd_avx512.h APIs instead of raw Intel
     147             :    intrinsics for readability and to facilitate portability to non-x86
     148             :    platforms.  Implies FD_HAS_AVX. */
     149             : 
     150             : #ifndef FD_HAS_AVX512
     151             : #define FD_HAS_AVX512 0
     152             : #endif
     153             : 
     154             : /* FD_HAS_SHANI indicates that the target supports Intel SHA extensions
     155             :    which accelerate SHA-1 and SHA-256 computation.  This extension is
     156             :    also called SHA-NI or SHA_NI (Secure Hash Algorithm New
     157             :    Instructions).  Although proposed in 2013, they're only supported on
     158             :    Intel Ice Lake and AMD Zen CPUs and newer.  Implies FD_HAS_AVX. */
     159             : 
     160             : #ifndef FD_HAS_SHANI
     161             : #define FD_HAS_SHANI 0
     162             : #endif
     163             : 
     164             : /* FD_HAS_GFNI indicates that the target supports Intel Galois Field
     165             :    extensions, which accelerate operations over binary extension fields,
     166             :    especially GF(2^8).  These instructions are supported on Intel Ice
     167             :    Lake and newer and AMD Zen4 and newer CPUs.  Implies FD_HAS_AVX. */
     168             : 
     169             : #ifndef FD_HAS_GFNI
     170             : #define FD_HAS_GFNI 0
     171             : #endif
     172             : 
     173             : /* FD_HAS_AESNI indicates that the target supports AES-NI extensions,
     174             :    which accelerate AES encryption and decryption.  While AVX predates
     175             :    the original AES-NI extension, the combination of AES-NI+AVX adds
     176             :    additional opcodes (such as vaesenc, a more flexible variant of
     177             :    aesenc).  Thus, implies FD_HAS_AVX.  A conservative estimate for
     178             :    minimum platform support is Intel Haswell or AMD Zen. */
     179             : 
     180             : #ifndef FD_HAS_AESNI
     181             : #define FD_HAS_AESNI 0
     182             : #endif
     183             : 
     184             : /* FD_HAS_LZ4 indicates that the target supports LZ4 compression.
     185             :    Roughly, does "#include <lz4.h>" and the APIs therein work? */
     186             : 
     187             : #ifndef FD_HAS_LZ4
     188             : #define FD_HAS_LZ4 0
     189             : #endif
     190             : 
     191             : /* FD_HAS_ZSTD indicates that the target supports ZSTD compression.
     192             :    Roughly, does "#include <zstd.h>" and the APIs therein work? */
     193             : 
     194             : #ifndef FD_HAS_ZSTD
     195             : #define FD_HAS_ZSTD 0
     196             : #endif
     197             : 
     198             : /* FD_HAS_COVERAGE indicates that the build target is built with coverage instrumentation. */
     199             : 
     200             : #ifndef FD_HAS_COVERAGE
     201             : #define FD_HAS_COVERAGE 0
     202             : #endif
     203             : 
     204             : /* FD_HAS_ASAN indicates that the build target is using ASAN. */
     205             : 
     206             : #ifndef FD_HAS_ASAN
     207             : #define FD_HAS_ASAN 0
     208             : #endif
     209             : 
     210             : /* FD_HAS_UBSAN indicates that the build target is using UBSAN. */
     211             : 
     212             : #ifndef FD_HAS_UBSAN
     213             : #define FD_HAS_UBSAN 0
     214             : #endif
     215             : 
     216             : /* FD_HAS_DEEPASAN indicates that the build target is using ASAN with manual
     217             :    memory poisoning for fd_alloc, fd_wksp, and fd_scratch. */
     218             : 
     219             : #ifndef FD_HAS_DEEPASAN
     220             : #define FD_HAS_DEEPASAN 0
     221             : #endif
     222             : 
     223             : /* Base development environment ***************************************/
     224             : 
     225             : /* The functionality provided by these vanilla headers are always
     226             :    available within the base development environment.  Notably, stdio.h
     227             :    / stdlib.h / et al at are not included here as these make lots of
     228             :    assumptions about the build target that may not be true (especially
     229             :    for on-chain and custom hardware use).  Code should prefer the fd
     230             :    util equivalents for such functionality when possible. */
     231             : 
     232             : #include <stdalign.h>
     233             : #include <string.h>
     234             : #include <limits.h>
     235             : #include <float.h>
     236             : 
     237             : /* Work around some library naming irregularities */
     238             : /* FIXME: Consider this for FLOAT/FLT, DOUBLE/DBL too? */
     239             : 
     240           3 : #define  SHORT_MIN  SHRT_MIN
     241           3 : #define  SHORT_MAX  SHRT_MAX
     242     1016415 : #define USHORT_MAX USHRT_MAX
     243             : 
     244             : /* Primitive types ****************************************************/
     245             : 
     246             : /* These typedefs provide single token regularized names for all the
     247             :    primitive types in the base development environment:
     248             : 
     249             :      char !
     250             :      schar !   short   int   long   int128 !!
     251             :      uchar    ushort  uint  ulong  uint128 !!
     252             :      float
     253             :      double !!!
     254             : 
     255             :    ! Does not assume the sign of char.  A naked char should be treated
     256             :      as cstr character and mathematical operations should be avoided on
     257             :      them.  This is less than ideal as the patterns for integer types in
     258             :      the C/C++ language spec itself are far more consistent with a naked
     259             :      char naturally being treated as signed (see above).  But there are
     260             :      lots of conflicts between architectures, languages and standard
     261             :      libraries about this so any use of a naked char shouldn't assume
     262             :      the sign ... sigh.
     263             : 
     264             :    !! Only available if FD_HAS_INT128 is defined
     265             : 
     266             :    !!! Should only used if FD_HAS_DOUBLE is defined but see note in
     267             :        FD_HAS_DOUBLE about C/C++ silent promotions of float to double in
     268             :        va_arg lists.
     269             : 
     270             :    Note also that these token names more naturally interoperate with
     271             :    integer constant declarations, type generic code generation
     272             :    techniques, with printf-style format strings than the stdint.h /
     273             :    inttypes.h handling.
     274             : 
     275             :    To minimize portability issues, unexpected silent type conversion
     276             :    issues, align with typical developer implicit usage, align with
     277             :    typical build target usage, ..., assumes char / short / int / long
     278             :    are 8 / 16 / 32 / 64 twos complement integers and float is IEEE-754
     279             :    single precision.  Further assumes little endian, truncating signed
     280             :    integer division, sign extending (arithmetic) signed right shift and
     281             :    signed left shift behaves the same as an unsigned left shift from bit
     282             :    operations point of view (technically the standard says signed left
     283             :    shift is undefined if the result would overflow).  Also, except for
     284             :    int128/uint128, assumes that aligned access to these will be
     285             :    naturally atomic.  Lastly assumes that unaligned access to these is
     286             :    functionally valid but does not assume that unaligned access to these
     287             :    is efficient or atomic.
     288             : 
     289             :    For values meant to be held in registers, code should prefer long /
     290             :    ulong types (improves asm generation given the prevalence of 64-bit
     291             :    targets and also to avoid lots of tricky bugs with silent promotions
     292             :    in the language ... e.g. ushort should ideally only be used for
     293             :    in-memory representations).
     294             : 
     295             :    These are currently not prefixed given how often they are used.  If
     296             :    this becomes problematic prefixes can be added as necessary.
     297             :    Specifically, C++ allows typedefs to be defined multiple times so
     298             :    long as they are equivalent.  Inequivalent collisions are not
     299             :    supported but should be rare (e.g. if a 3rd party header thinks
     300             :    "ulong" should be something other an "unsigned long", the 3rd party
     301             :    header probably should be nuked from orbit).  C11 and forward also
     302             :    allow multiple equivalent typedefs.  C99 and earlier don't but this
     303             :    is typically only a warning and then only if pedantic warnings are
     304             :    enabled.  Thus, if we want to support users using C99 and earlier who
     305             :    want to do a strict compile and have a superfluous collision with
     306             :    these types in other libraries, uncomment the below (or do something
     307             :    equivalent for the compiler). */
     308             : 
     309             : //#pragma GCC diagnostic push
     310             : //#pragma GCC diagnostic ignored "-Wpedantic"
     311             : 
     312             : typedef signed char schar; /* See above note of sadness */
     313             : 
     314             : typedef unsigned char  uchar;
     315             : typedef unsigned short ushort;
     316             : typedef unsigned int   uint;
     317             : typedef unsigned long  ulong;
     318             : 
     319             : #if FD_HAS_INT128
     320             : 
     321             : __extension__ typedef          __int128  int128;
     322             : __extension__ typedef unsigned __int128 uint128;
     323             : 
     324  1200000048 : #define UINT128_MAX (~(uint128)0)
     325           6 : #define  INT128_MAX ((int128)(UINT128_MAX>>1))
     326           3 : #define  INT128_MIN (-INT128_MAX-(int128)1)
     327             : 
     328             : #endif
     329             : 
     330             : //#pragma GCC diagnostic pop
     331             : 
     332             : /* Compiler tricks ****************************************************/
     333             : 
     334             : /* FD_STRINGIFY,FD_CONCAT{2,3,4}:  Various macros for token
     335             :    stringification and pasting.  FD_STRINGIFY returns the argument as a
     336             :    cstr (e.g. FD_STRINGIFY(foo) -> "foo").  FD_CONCAT* pastes the tokens
     337             :    together into a single token (e.g.  FD_CONCAT3(a,b,c) -> abc).  The
     338             :    EXPAND variants first expand their arguments and then do the token
     339             :    operation (e.g.  FD_EXPAND_THEN_STRINGIFY(__LINE__) -> "104" if done
     340             :    on line 104 of the source code file). */
     341             : 
     342             : #define FD_STRINGIFY(x)#x
     343     7394880 : #define FD_CONCAT2(a,b)a##b
     344       17523 : #define FD_CONCAT3(a,b,c)a##b##c
     345           0 : #define FD_CONCAT4(a,b,c,d)a##b##c##d
     346             : 
     347             : #define FD_EXPAND_THEN_STRINGIFY(x)FD_STRINGIFY(x)
     348     4200096 : #define FD_EXPAND_THEN_CONCAT2(a,b)FD_CONCAT2(a,b)
     349 >24920*10^7 : #define FD_EXPAND_THEN_CONCAT3(a,b,c)FD_CONCAT3(a,b,c)
     350     5528412 : #define FD_EXPAND_THEN_CONCAT4(a,b,c,d)FD_CONCAT4(a,b,c,d)
     351             : 
     352             : /* FD_VA_ARGS_SELECT(__VA_ARGS__,e32,e31,...e1):  Macro that expands to
     353             :    en at compile time where n is number of items in the __VA_ARGS__
     354             :    list.  If __VA_ARGS__ is empty, returns e1.  Assumes __VA_ARGS__ has
     355             :    at most 32 arguments.  Useful for making a variadic macro whose
     356             :    behavior depends on the number of arguments in __VA_ARGS__. */
     357             : 
     358             : #define FD_VA_ARGS_SELECT(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,a,b,c,d,e,f,_,...)_
     359             : 
     360             : /* FD_SRC_LOCATION returns a const cstr holding the line of code where
     361             :    FD_SRC_LOCATION was used. */
     362             : 
     363             : #define FD_SRC_LOCATION __FILE__ "(" FD_EXPAND_THEN_STRINGIFY(__LINE__) ")"
     364             : 
     365             : /* FD_STATIC_ASSERT tests at compile time if c is non-zero.  If not,
     366             :    it aborts the compile with an error.  err itself should be a token
     367             :    (e.g. not a string, no whitespace, etc). */
     368             : 
     369             : #ifdef __cplusplus
     370             : #define FD_STATIC_ASSERT(c,err) static_assert(c, #err)
     371             : #else
     372       21897 : #define FD_STATIC_ASSERT(c,err) _Static_assert(c, #err)
     373             : #endif
     374             : 
     375             : /* FD_ADDRESS_OF_PACKED_MEMBER(x):  Linguistically does &(x) but without
     376             :    recent compiler complaints that &x might be unaligned if x is a
     377             :    member of a packed datastructure.  (Often needed for interfacing with
     378             :    hardware / packets / etc.) */
     379             : 
     380           3 : #define FD_ADDRESS_OF_PACKED_MEMBER( x ) (__extension__({                                      \
     381           3 :     char * _fd_aopm = (char *)&(x);                                                            \
     382           3 :     __asm__( "# FD_ADDRESS_OF_PACKED_MEMBER(" #x ") @" FD_SRC_LOCATION : "+r" (_fd_aopm) :: ); \
     383           3 :     (__typeof__(&(x)))_fd_aopm;                                                                \
     384           3 :   }))
     385             : 
     386             : /* FD_PROTOTYPES_{BEGIN,END}:  Headers that might be included in C++
     387             :    source should encapsulate the prototypes of code and globals
     388             :    contained in compilation units compiled as C with a
     389             :    FD_PROTOTYPE_{BEGIN,END} pair. */
     390             : 
     391             : #ifdef __cplusplus
     392             : #define FD_PROTOTYPES_BEGIN extern "C" {
     393             : #else
     394             : #define FD_PROTOTYPES_BEGIN
     395             : #endif
     396             : 
     397             : #ifdef __cplusplus
     398             : #define FD_PROTOTYPES_END }
     399             : #else
     400             : #define FD_PROTOTYPES_END
     401             : #endif
     402             : 
     403             : /* FD_ASM_LG_ALIGN(lg_n) expands to an alignment assembler directive
     404             :    appropriate for the current architecture/ABI.  The resulting align
     405             :    is 2^(lg_n) bytes, i.e. FD_ASM_LG_ALIGN(3) aligns by 8 bytes. */
     406             : 
     407             : #if defined(__aarch64__)
     408             : #define FD_ASM_LG_ALIGN(lg_n) ".align " #lg_n "\n"
     409             : #elif defined(__x86_64__) || defined(__powerpc64__) || defined(__riscv)
     410             : #define FD_ASM_LG_ALIGN(lg_n) ".p2align " #lg_n "\n"
     411             : #endif
     412             : 
     413             : /* FD_IMPORT declares a variable name and initializes with the contents
     414             :    of the file at path (with potentially some assembly directives for
     415             :    additional footer info).  It is equivalent to:
     416             : 
     417             :      type const name[] __attribute__((aligned(align))) = {
     418             : 
     419             :        ... code that would initialize the contents of name to the
     420             :        ... raw binary data found in the file at path at compile time
     421             :        ... (with any appended information as specified by footer)
     422             : 
     423             :      };
     424             : 
     425             :      ulong const name_sz = ... number of bytes pointed to by name;
     426             : 
     427             :    More precisely, this creates a symbol "name" in the object file that
     428             :    points to a read-only copy of the raw data in the file at "path" as
     429             :    it was at compile time.  2^lg_align specifies the minimum alignment
     430             :    required for the copy's first byte as an unsuffixed decimal integer.
     431             :    footer are assembly commands to permit additional data to be appended
     432             :    to the copy (use "" for footer if no footer is necessary).
     433             : 
     434             :    Then it exposes a pointer to this copy in the current compilation
     435             :    unit as name and the byte size as name_sz.  name_sz covers the first
     436             :    byte of the included data to the last byte of the footer inclusive.
     437             : 
     438             :    The dummy linker symbol _fd_import_name_sz will also be created in
     439             :    the object file as some under the hood magic to make this work.  This
     440             :    should not be used in any compile unit as some compilers (I'm looking
     441             :    at you clang-15, but apparently not clang-10) will sometimes mangle
     442             :    its value from what it was set to in the object file even marked as
     443             :    absolute in the object file.
     444             : 
     445             :    This should only be used at global scope and should be done at most
     446             :    once over all object files / libraries used to make a program.  If
     447             :    other compilation units want to make use of an import in a different
     448             :    compilation unit, they should declare:
     449             : 
     450             :      extern type const name[] __attribute__((aligned(align)));
     451             : 
     452             :    and/or:
     453             : 
     454             :      extern ulong const name_sz;
     455             : 
     456             :    as necessary (that is, do the usual to use name and name_sz as shown
     457             :    for the pseudo code above).
     458             : 
     459             :    Important safety tip!  gcc -M will generally not detect the
     460             :    dependency this creates between the importing file and the imported
     461             :    file.  This can cause incremental builds to miss changes to the
     462             :    imported file.  Ideally, we would have FD_IMPORT automatically do
     463             :    something like:
     464             : 
     465             :      _Pragma( "GCC dependency \"" path "\" )
     466             : 
     467             :    This doesn't work as is because _Pragma needs some macro expansion
     468             :    hacks to accept this (this is doable).  After that workaround, this
     469             :    still doesn't work because, due to tooling limitations, the pragma
     470             :    path is relative to the source file directory and the FD_IMPORT path
     471             :    is relative to the make directory (working around this would
     472             :    require a __FILE__-like directive for the source code directory base
     473             :    path).  Even if that did exist, it might still not work because
     474             :    out-of-tree builds often require some substitutions to the gcc -M
     475             :    generated dependencies that this might not pick up (at least not
     476             :    without some build system surgery).  And then it still wouldn't work
     477             :    because gcc -M seems to ignore all of this anyways (which is the
     478             :    actual show stopper as this pragma does something subtly different
     479             :    than what the name suggests and there isn't any obvious support for a
     480             :    "pseudo-include".)  Another reminder that make clean and fast builds
     481             :    are our friend. */
     482             : 
     483             : #if defined(__ELF__)
     484             : 
     485             : #define FD_IMPORT( name, path, type, lg_align, footer )      \
     486             :   __asm__( ".section .rodata,\"a\",@progbits\n"              \
     487             :            ".type " #name ",@object\n"                       \
     488             :            ".globl " #name "\n"                              \
     489             :            FD_ASM_LG_ALIGN(lg_align)                         \
     490             :            #name ":\n"                                       \
     491             :            ".incbin \"" path "\"\n"                          \
     492             :            footer "\n"                                       \
     493             :            ".size " #name ",. - " #name "\n"                 \
     494             :            "_fd_import_" #name "_sz = . - " #name "\n"       \
     495             :            ".type " #name "_sz,@object\n"                    \
     496             :            ".globl " #name "_sz\n"                           \
     497             :            FD_ASM_LG_ALIGN(3)                                \
     498             :            #name "_sz:\n"                                    \
     499             :            ".quad _fd_import_" #name "_sz\n"                 \
     500             :            ".size " #name "_sz,8\n"                          \
     501             :            ".previous\n" );                                  \
     502             :   extern type  const name[] __attribute__((aligned(1<<(lg_align)))); \
     503             :   extern ulong const name##_sz
     504             : 
     505             : #elif defined(__MACH__)
     506             : 
     507             : #define FD_IMPORT( name, path, type, lg_align, footer )      \
     508             :   __asm__( ".section __DATA,__const\n"                       \
     509             :            ".globl _" #name "\n"                             \
     510             :            FD_ASM_LG_ALIGN(lg_align)                         \
     511             :            "_" #name ":\n"                                   \
     512             :            ".incbin \"" path "\"\n"                          \
     513             :            footer "\n"                                       \
     514             :            "_fd_import_" #name "_sz = . - _" #name "\n"      \
     515             :            ".globl _" #name "_sz\n"                          \
     516             :            FD_ASM_LG_ALIGN(3)                                \
     517             :            "_" #name "_sz:\n"                                \
     518             :            ".quad _fd_import_" #name "_sz\n"                 \
     519             :            ".previous\n" );                                  \
     520             :   extern type  const name[] __attribute__((aligned(1<<(lg_align)))); \
     521             :   extern ulong const name##_sz
     522             : 
     523             : #endif
     524             : 
     525             : /* FD_IMPORT_{BINARY,CSTR} are common cases for FD_IMPORT.
     526             : 
     527             :    In BINARY, the file is imported into the object file and exposed to
     528             :    the caller as a uchar binary data.  name_sz will be the number of
     529             :    bytes in the file at time of import.  name will have 128 byte
     530             :    alignment.
     531             : 
     532             :    In CSTR, the file is imported into the object caller with a '\0'
     533             :    termination appended and exposed to the caller as a cstr.  Assuming
     534             :    the file is text (i.e. has no internal '\0's), strlen(name) will the
     535             :    number of bytes in the file and name_sz will be strlen(name)+1.  name
     536             :    can have arbitrary alignment. */
     537             : 
     538             : #ifdef FD_IMPORT
     539             : #define FD_IMPORT_BINARY(name, path) FD_IMPORT( name, path, uchar, 7, ""        )
     540             : #define FD_IMPORT_CSTR(  name, path) FD_IMPORT( name, path,  char, 1, ".byte 0" )
     541             : #endif
     542             : 
     543             : /* Optimizer tricks ***************************************************/
     544             : 
     545             : /* FD_RESTRICT is a pointer modifier for to designate a pointer as
     546             :    restricted.  Hoops jumped because C++-17 still doesn't understand
     547             :    restrict ... sigh */
     548             : 
     549             : #ifndef FD_RESTRICT
     550             : #ifdef __cplusplus
     551             : #define FD_RESTRICT __restrict
     552             : #else
     553             : #define FD_RESTRICT restrict
     554             : #endif
     555             : #endif
     556             : 
     557             : /* fd_type_pun(p), fd_type_pun_const(p):  These allow use of type
     558             :    punning while keeping strict aliasing optimizations enabled (e.g.
     559             :    some UNIX APIs, like sockaddr related APIs are dependent on type
     560             :    punning).  These allow these API's to be used cleanly while keeping
     561             :    strict aliasing optimizations enabled and strict alias checking done. */
     562             : 
     563             : static inline void *
     564    40326092 : fd_type_pun( void * p ) {
     565    40326092 :   __asm__( "# fd_type_pun @" FD_SRC_LOCATION : "+r" (p) :: "memory" );
     566    40326092 :   return p;
     567    40326092 : }
     568             : 
     569             : static inline void const *
     570    38081934 : fd_type_pun_const( void const * p ) {
     571    38081934 :   __asm__( "# fd_type_pun_const @" FD_SRC_LOCATION : "+r" (p) :: "memory" );
     572    38081934 :   return p;
     573    38081934 : }
     574             : 
     575             : /* FD_{LIKELY,UNLIKELY}(c):  Evaluates c and returns whether it is
     576             :    logical true/false as long (1L/0L).  It also hints to the optimizer
     577             :    whether it should optimize for the case of c evaluating as
     578             :    true/false. */
     579             : 
     580 >12547*10^7 : #define FD_LIKELY(c)   __builtin_expect( !!(c), 1L )
     581 >48555*10^7 : #define FD_UNLIKELY(c) __builtin_expect( !!(c), 0L )
     582             : 
     583             : /* FD_FN_PURE hints to the optimizer that the function, roughly
     584             :    speaking, does not have side effects.  As such, the compiler can
     585             :    replace a call to the function with the result of an earlier call to
     586             :    that function provide the inputs and memory used hasn't changed.
     587             : 
     588             :    IMPORTANT SAFETY TIP!  Recent compilers seem to take an undocumented
     589             :    and debatable stance that pure functions do no writes to memory.
     590             :    This is a sufficient condition for the above but not a necessary one.
     591             : 
     592             :    Consider, for example, the real world case of an otherwise pure
     593             :    function that uses pass-by-reference to return more than one value
     594             :    (an unpleasant practice that is sadly often necessary because C/C++,
     595             :    compilers and underlying platform ABIs are very bad at helping
     596             :    developers simply and clearly express their intent to return multiple
     597             :    values and then generate good assembly for such).
     598             : 
     599             :    If called multiple times sequentially, all but the first call to such
     600             :    a "pure" function could be optimized away because the non-volatile
     601             :    memory writes done in the all but the 1st call for the
     602             :    pass-by-reference-returns write the same value to normal memory that
     603             :    was written on the 1st call.  That is, these calls return the same
     604             :    value for their direct return and do writes that do not have any
     605             :    visible effect.
     606             : 
     607             :    Thus, while it is safe for the compiler to eliminate all but the
     608             :    first call via techniques like common subexpression elimination, it
     609             :    is not safe for the compiler to infer that the first call did no
     610             :    writes.
     611             : 
     612             :    But recent compilers seem to do exactly that.
     613             : 
     614             :    Sigh ... we can't use FD_FN_PURE on such functions because of all the
     615             :    above linguistic, compiler, documentation and ABI infinite sadness.
     616             : 
     617             :    TL;DR To be safe against the above vagaries, recommend using
     618             :    FD_FN_PURE to annotate functions that do no memory writes (including
     619             :    trivial memory writes) and try to design HPC APIs to avoid returning
     620             :    multiple values as much as possible.
     621             : 
     622             :    Followup: FD_FN_PURE expands to nothing by default given additional
     623             :    confusion between how current languages, compilers, CI, fuzzing, and
     624             :    developers interpret this function attribute.  We keep it around
     625             :    given it documents the intent of various APIs and so it can be
     626             :    manually enabled to find implementation surprises during bullet
     627             :    proofing (e.g. under compiler options like "extra-brutality").
     628             :    Hopefully someday, pure function attributes will someday be handled
     629             :    more consistently across the board. */
     630             : 
     631             : #ifndef FD_FN_PURE
     632             : #define FD_FN_PURE
     633             : #endif
     634             : 
     635             : /* FD_FN_CONST is like pure but also, even stronger, indicates that the
     636             :    function does not depend on the state of memory.  See note above
     637             :    about why this expands to nothing by default. */
     638             : 
     639             : #ifndef FD_FN_CONST
     640             : #define FD_FN_CONST
     641             : #endif
     642             : 
     643             : /* FD_FN_UNUSED indicates that it is okay if the function with static
     644             :    linkage is not used.  Allows working around -Winline in header only
     645             :    APIs where the compiler decides not to actually inline the function.
     646             :    (This belief, frequently promulgated by anti-macro cults, that "An
     647             :    Inline Function is As Fast As a Macro" ... an entire section in gcc's
     648             :    documentation devoted to it in fact ... remains among the biggest
     649             :    lies in computer science.  Yes, an inline function is as fast as a
     650             :    macro ... when the compiler actually decides to treat the inline
     651             :    keyword more than just for entertainment purposes only.  Which, as
     652             :    -Winline proves, it frequently doesn't.  Sigh ... force_inline like
     653             :    compiler extensions might be an alternative here but they have their
     654             :    own portability issues.) */
     655             : 
     656          48 : #define FD_FN_UNUSED __attribute__((unused))
     657             : 
     658             : /* FD_FN_UNSANITIZED tells the compiler to disable AddressSanitizer and
     659             :    UndefinedBehaviorSanitizer instrumentation.  For some functions, this
     660             :    can improve instrumented compile time by ~30x. */
     661             : 
     662             : #define FD_FN_UNSANITIZED __attribute__((no_sanitize("address", "undefined")))
     663             : 
     664             : /* FD_FN_SENSITIVE instruments the compiler to sanitize sensitive functions.
     665             :    https://eprint.iacr.org/2023/1713 (Sec 3.2)
     666             :    - Clear all registers with __attribute__((zero_call_used_regs("all")))
     667             :    - Clear stack with __attribute__((strub)), available in gcc 14+ */
     668             : 
     669             : #if __has_attribute(strub)
     670             : #define FD_FN_SENSITIVE __attribute__((strub)) __attribute__((zero_call_used_regs("all")))
     671             : #elif __has_attribute(zero_call_used_regs)
     672             : #define FD_FN_SENSITIVE __attribute__((zero_call_used_regs("all")))
     673             : #else
     674             : #define FD_FN_SENSITIVE
     675             : #endif
     676             : 
     677             : /* FD_PARAM_UNUSED indicates that it is okay if the function parameter is not
     678             :    used. */
     679             : 
     680             : #define FD_PARAM_UNUSED __attribute__((unused))
     681             : 
     682             : /* FD_TYPE_PACKED indicates that a type is to be packed, reseting its alignment
     683             :    to 1. */
     684             : 
     685             : #define FD_TYPE_PACKED __attribute__((packed))
     686             : 
     687             : /* FD_WARN_UNUSED tells the compiler the result (from a function) should
     688             :    be checked. This is useful to force callers to either check the result
     689             :    or deliberately and explicitly ignore it. Good for result codes and
     690             :    errors */
     691             : 
     692             : #define FD_WARN_UNUSED __attribute__ ((warn_unused_result))
     693             : 
     694             : /* FD_FALLTHRU tells the compiler that a case in a switch falls through
     695             :    to the next case. This avoids the compiler complaining, in cases where
     696             :    it is an intentional fall through.
     697             :    The "while(0)" avoids a compiler complaint in the event the case
     698             :    has no statement, example:
     699             :      switch( return_code ) {
     700             :        case RETURN_CASE_1: FD_FALLTHRU;
     701             :        case RETURN_CASE_2: FD_FALLTHRU;
     702             :        case RETURN_CASE_3:
     703             :          case_123();
     704             :        default:
     705             :          case_other();
     706             :      }
     707             : 
     708             :    See C++17 [[fallthrough]] and gcc __attribute__((fallthrough)) */
     709             : 
     710             : #define FD_FALLTHRU while(0) __attribute__((fallthrough))
     711             : 
     712             : /* FD_COMPILER_FORGET(var):  Tells the compiler that it shouldn't use
     713             :    any knowledge it has about the provided register-compatible variable
     714             :    var for optimizations going forward (i.e. the variable has changed in
     715             :    a deterministic but unknown-to-the-compiler way where the actual
     716             :    change is the identity operation).  Useful for inhibiting various
     717             :    branch nest misoptimizations (compilers unfortunately tend to
     718             :    radically underestimate the impact in raw average performance and
     719             :    jitter and the probability of branch mispredicts or the cost to the
     720             :    CPU of having lots of branches).  This is not asm volatile (use
     721             :    UNPREDICTABLE below for that) and has no clobbers.  So if var is not
     722             :    used after the forget, the compiler can optimize the FORGET away
     723             :    (along with operations preceding it used to produce var). */
     724             : 
     725 36448701959 : #define FD_COMPILER_FORGET(var) __asm__( "# FD_COMPILER_FORGET(" #var ")@" FD_SRC_LOCATION : "+r" (var) )
     726             : 
     727             : /* FD_COMPILER_UNPREDICTABLE(var):  Same as FD_COMPILER_FORGET(var) but
     728             :    the provided variable has changed in a non-deterministic way from the
     729             :    compiler's POV (e.g. the value in the variable on output should not
     730             :    be treated as a compile time constant even if it is one
     731             :    linguistically).  Useful for suppressing unwanted
     732             :    compile-time-const-based optimizations like hoisting operations with
     733             :    useful CPU side effects out of a critical loop. */
     734             : 
     735    31086237 : #define FD_COMPILER_UNPREDICTABLE(var) __asm__ __volatile__( "# FD_COMPILER_UNPREDICTABLE(" #var ")@" FD_SRC_LOCATION : "+m,r" (var) )
     736             : 
     737             : /* Atomic tricks ******************************************************/
     738             : 
     739             : /* FD_COMPILER_MFENCE():  Tells the compiler that it can't move any
     740             :    memory operations (load or store) from before the MFENCE to after the
     741             :    MFENCE (and vice versa).  The processor itself might still reorder
     742             :    around the fence though (that requires platform specific fences). */
     743             : 
     744 >11054*10^7 : #define FD_COMPILER_MFENCE() __asm__ __volatile__( "# FD_COMPILER_MFENCE()@" FD_SRC_LOCATION ::: "memory" )
     745             : 
     746             : /* FD_SPIN_PAUSE():  Yields the logical core of the calling thread to
     747             :    the other logical cores sharing the same underlying physical core for
     748             :    a few clocks without yielding it to the operating system scheduler.
     749             :    Typically useful for shared memory spin polling loops, especially if
     750             :    hyperthreading is in use.  IMPORTANT SAFETY TIP!  This might act as a
     751             :    FD_COMPILER_MFENCE on some combinations of toolchains and targets
     752             :    (e.g. gcc documents that __builtin_ia32_pause also does a compiler
     753             :    memory) but this should not be relied upon for portable code
     754             :    (consider making this a compiler memory fence on all platforms?) */
     755             : 
     756             : #if FD_HAS_X86
     757 14729636410 : #define FD_SPIN_PAUSE() __builtin_ia32_pause()
     758             : #else
     759             : #define FD_SPIN_PAUSE() ((void)0)
     760             : #endif
     761             : 
     762             : /* FD_YIELD():  Yields the logical core of the calling thread to the
     763             :    operating system scheduler if a hosted target and does a spin pause
     764             :    otherwise. */
     765             : 
     766             : #if FD_HAS_HOSTED
     767       21464 : #define FD_YIELD() fd_yield()
     768             : #else
     769             : #define FD_YIELD() FD_SPIN_PAUSE()
     770             : #endif
     771             : 
     772             : /* FD_VOLATILE_CONST(x):  Tells the compiler is not able to predict the
     773             :    value obtained by dereferencing x and that dereferencing x might have
     774             :    other side effects (e.g. maybe another thread could change the value
     775             :    and the compiler has no way of knowing this).  Generally speaking,
     776             :    the volatile keyword is broken linguistically.  Volatility is not a
     777             :    property of the variable but of the dereferencing of a variable (e.g.
     778             :    what is volatile from the POV of a reader of a shared variable is not
     779             :    necessarily volatile from the POV a writer of that shared variable in
     780             :    a different thread). */
     781             : 
     782  1354460867 : #define FD_VOLATILE_CONST(x) (*((volatile const __typeof__((x)) *)&(x)))
     783             : 
     784             : /* FD_VOLATILE(x): tells the compiler is not able to predict the effect
     785             :    of modifying x and that dereferencing x might have other side effects
     786             :    (e.g. maybe another thread is spinning on x waiting for its value to
     787             :    change and the compiler has no way of knowing this). */
     788             : 
     789   779748880 : #define FD_VOLATILE(x) (*((volatile __typeof__((x)) *)&(x)))
     790             : 
     791             : #if FD_HAS_ATOMIC
     792             : 
     793             : /* FD_ATOMIC_FETCH_AND_{ADD,SUB,OR,AND,XOR}(p,v):
     794             : 
     795             :    FD_ATOMIC_FETCH_AND_ADD(p,v) does
     796             :      f = *p;
     797             :      *p = f + v
     798             :      return f;
     799             :    as a single atomic operation.  Similarly for the other variants. */
     800             : 
     801     6009573 : #define FD_ATOMIC_FETCH_AND_ADD(p,v) __sync_fetch_and_add( (p), (v) )
     802     6019296 : #define FD_ATOMIC_FETCH_AND_SUB(p,v) __sync_fetch_and_sub( (p), (v) )
     803    65427105 : #define FD_ATOMIC_FETCH_AND_OR( p,v) __sync_fetch_and_or(  (p), (v) )
     804             : #define FD_ATOMIC_FETCH_AND_AND(p,v) __sync_fetch_and_and( (p), (v) )
     805             : #define FD_ATOMIC_FETCH_AND_XOR(p,v) __sync_fetch_and_xor( (p), (v) )
     806             : 
     807             : /* FD_ATOMIC_{ADD,SUB,OR,AND,XOR}_AND_FETCH(p,v):
     808             : 
     809             :    FD_ATOMIC_{ADD,SUB,OR,AND,XOR}_AND_FETCH(p,v) does
     810             :      r = *p + v;
     811             :      *p = r;
     812             :      return r;
     813             :    as a single atomic operation.  Similarly for the other variants. */
     814             : 
     815             : #define FD_ATOMIC_ADD_AND_FETCH(p,v) __sync_add_and_fetch( (p), (v) )
     816             : #define FD_ATOMIC_SUB_AND_FETCH(p,v) __sync_sub_and_fetch( (p), (v) )
     817             : #define FD_ATOMIC_OR_AND_FETCH( p,v) __sync_or_and_fetch(  (p), (v) )
     818             : #define FD_ATOMIC_AND_AND_FETCH(p,v) __sync_and_and_fetch( (p), (v) )
     819             : #define FD_ATOMIC_XOR_AND_FETCH(p,v) __sync_xor_and_fetch( (p), (v) )
     820             : 
     821             : /* FD_ATOMIC_CAS(p,c,s):
     822             : 
     823             :    o = FD_ATOMIC_CAS(p,c,s) conceptually does:
     824             :      o = *p;
     825             :      if( o==c ) *p = s;
     826             :      return o
     827             :    as a single atomic operation. */
     828             : 
     829   329258076 : #define FD_ATOMIC_CAS(p,c,s) __sync_val_compare_and_swap( (p), (c), (s) )
     830             : 
     831             : /* FD_ATOMIC_XCHG(p,v):
     832             : 
     833             :    o = FD_ATOMIC_XCHG( p, v ) conceptually does:
     834             :      o = *p
     835             :      *p = v
     836             :      return o
     837             :    as a single atomic operation.
     838             : 
     839             :    Intel's __sync compiler extensions from the days of yore mysteriously
     840             :    implemented atomic exchange via the very misleadingly named
     841             :    __sync_lock_test_and_set.  And some implementations (and C++)
     842             :    debatably then implemented this API according to what the misleading
     843             :    name implied as opposed to what it actually did.  But those
     844             :    implementations didn't bother to provide a replacement for atomic
     845             :    exchange functionality (forcing us to emulate atomic exchange more
     846             :    slowly via CAS there).  Sigh ... we do what we can to fix this up. */
     847             : 
     848             : #ifndef FD_ATOMIC_XCHG_STYLE
     849             : #if FD_HAS_X86 && !__cplusplus
     850             : #define FD_ATOMIC_XCHG_STYLE 1
     851             : #else
     852             : #define FD_ATOMIC_XCHG_STYLE 0
     853             : #endif
     854             : #endif
     855             : 
     856             : #if FD_ATOMIC_XCHG_STYLE==0
     857             : #define FD_ATOMIC_XCHG(p,v) (__extension__({                                                                            \
     858             :     __typeof__(*(p)) * _fd_atomic_xchg_p = (p);                                                                         \
     859             :     __typeof__(*(p))   _fd_atomic_xchg_v = (v);                                                                         \
     860             :     __typeof__(*(p))   _fd_atomic_xchg_t;                                                                               \
     861             :     for(;;) {                                                                                                           \
     862             :       _fd_atomic_xchg_t = FD_VOLATILE_CONST( *_fd_atomic_xchg_p );                                                      \
     863             :       if( FD_LIKELY( __sync_bool_compare_and_swap( _fd_atomic_xchg_p, _fd_atomic_xchg_t, _fd_atomic_xchg_v ) ) ) break; \
     864             :       FD_SPIN_PAUSE();                                                                                                  \
     865             :     }                                                                                                                   \
     866             :     _fd_atomic_xchg_t;                                                                                                  \
     867             :   }))
     868             : #elif FD_ATOMIC_XCHG_STYLE==1
     869    11898228 : #define FD_ATOMIC_XCHG(p,v) __sync_lock_test_and_set( (p), (v) )
     870             : #else
     871             : #error "Unknown FD_ATOMIC_XCHG_STYLE"
     872             : #endif
     873             : 
     874             : #endif /* FD_HAS_ATOMIC */
     875             : 
     876             : /* FD_TL:  This indicates that the variable should be thread local.
     877             : 
     878             :    FD_ONCE_{BEGIN,END}:  The block:
     879             : 
     880             :      FD_ONCE_BEGIN {
     881             :        ... code ...
     882             :      } FD_ONCE_END
     883             : 
     884             :    linguistically behaves like:
     885             : 
     886             :      do {
     887             :        ... code ...
     888             :      } while(0)
     889             : 
     890             :    But provides a low overhead guarantee that:
     891             :      - The block will be executed by at most once over all threads
     892             :        in a process (i.e. the set of threads which share global
     893             :        variables).
     894             :      - No thread in a process that encounters the block will continue
     895             :        past it until it has executed once.
     896             : 
     897             :    This implies that caller promises a ONCE block will execute in a
     898             :    finite time.  (Meant for doing simple lightweight initializations.)
     899             : 
     900             :    It is okay to nest ONCE blocks.  The thread that executes the
     901             :    outermost will execute all the nested once as part of executing the
     902             :    outermost.
     903             : 
     904             :    A ONCE implicitly provides a compiler memory fence to reduce the risk
     905             :    that the compiler will assume that operations done in the once block
     906             :    on another thread have not been done (e.g. propagating pre-once block
     907             :    variable values into post-once block code).  It is up to the user to
     908             :    provide any necessary hardware fencing (usually not necessary).
     909             : 
     910             :    FD_THREAD_ONCE_{BEGIN,END}:  The block:
     911             : 
     912             :      FD_THREAD_ONCE_BEGIN {
     913             :        ... code ...
     914             :      } FD_THREAD_ONCE_END;
     915             : 
     916             :    is similar except the guarantee is that the block only covers the
     917             :    invoking thread and it does not provide any fencing.  If a thread
     918             :    once begin is nested inside a once begin, that thread once begin will
     919             :    only be executed on the thread that executes the thread once begin.
     920             :    It is similarly okay to nest ONCE block inside a THREAD_ONCE block.
     921             : 
     922             :    FD_TURNSTILE_{BEGIN,BLOCKED,END} implement a turnstile for all
     923             :    threads in a process.  Only one thread can be in the turnstile at a
     924             :    time.  Usage:
     925             : 
     926             :      FD_TURNSTILE_BEGIN(blocking) {
     927             : 
     928             :        ... At this point, we are the only thread executing this block of
     929             :        ... code.
     930             :        ...
     931             :        ... Do operations that must be done by threads one-at-a-time
     932             :        ... here.
     933             :        ...
     934             :        ... Because compiler memory fences are done just before entering
     935             :        ... and after exiting this block, there is typically no need to
     936             :        ... use any atomics / volatile / fencing here.  That is, we can
     937             :        ... just write "normal" code on platforms where writes to memory
     938             :        ... become visible to other threads in the order in which they
     939             :        ... were issued in the machine code (e.g. x86) as others will not
     940             :        ... proceed with this block until they exit it.  YMMV for non-x86
     941             :        ... platforms (probably need additional hardware store fences in
     942             :        ... these macros).
     943             :        ...
     944             :        ... It is safe to use "break" and/or "continue" within this
     945             :        ... block.  The block will exit with the appropriate compiler
     946             :        ... fencing and unlocking.  Execution will resume immediately
     947             :        ... after FD_TURNSTILE_END.
     948             : 
     949             :        ... IMPORTANT SAFETY TIP!  DO NOT RETURN FROM THIS BLOCK.
     950             : 
     951             :      } FD_TURNSTILE_BLOCKED {
     952             : 
     953             :        ... At this point, there was another thread in the turnstile when
     954             :        ... we tried to enter the turnstile.
     955             :        ...
     956             :        ... Handle blocked here.
     957             :        ...
     958             :        ... On exiting this block, if blocking was zero, we will resume
     959             :        ... execution immediately after FD_TURNSTILE_END.  If blocking
     960             :        ... was non-zero, we will resume execution immediately before
     961             :        ... FD_TURNSTILE_BEGIN (e.g. we will retry again after a short
     962             :        ... spin pause).
     963             :        ...
     964             :        ... It is safe to use "break" and/or "continue" within this
     965             :        ... block.  Both will exit this block and resume execution
     966             :        ... at the location indicated as per what blocking specified
     967             :        ... then the turnstile was entered.
     968             :        ...
     969             :        ... It is technically safe to return from this block but
     970             :        ... also extremely gross.
     971             : 
     972             :      } FD_TURNSTILE_END; */
     973             : 
     974             : #if FD_HAS_THREADS /* Potentially more than one thread in the process */
     975             : 
     976             : #ifndef FD_TL
     977             : #define FD_TL __thread
     978             : #endif
     979             : 
     980        4023 : #define FD_ONCE_BEGIN do {                                                \
     981        4023 :     FD_COMPILER_MFENCE();                                                 \
     982        4023 :     static volatile int _fd_once_block_state = 0;                         \
     983        4023 :     for(;;) {                                                             \
     984        4023 :       int _fd_once_block_tmp = _fd_once_block_state;                      \
     985        4023 :       if( FD_LIKELY( _fd_once_block_tmp>0 ) ) break;                      \
     986        4023 :       if( FD_LIKELY( !_fd_once_block_tmp ) &&                             \
     987        2442 :           FD_LIKELY( !FD_ATOMIC_CAS( &_fd_once_block_state, 0, -1 ) ) ) { \
     988        2442 :         do
     989             : 
     990             : #define FD_ONCE_END               \
     991        2442 :         while(0);                 \
     992        2442 :         FD_COMPILER_MFENCE();     \
     993           0 :         _fd_once_block_state = 1; \
     994           0 :         break;                    \
     995        2442 :       }                           \
     996        2442 :       FD_YIELD();                 \
     997           0 :     }                             \
     998        4023 :   } while(0)
     999             : 
    1000          36 : #define FD_THREAD_ONCE_BEGIN do {                       \
    1001          36 :     static FD_TL int _fd_thread_once_block_state = 0;   \
    1002          36 :     if( FD_UNLIKELY( !_fd_thread_once_block_state ) ) { \
    1003           9 :       do
    1004             : 
    1005             : #define FD_THREAD_ONCE_END             \
    1006           9 :       while(0);                        \
    1007           9 :       _fd_thread_once_block_state = 1; \
    1008           9 :     }                                  \
    1009          36 :   } while(0)
    1010             : 
    1011           9 : #define FD_TURNSTILE_BEGIN(blocking) do {                               \
    1012           9 :     static volatile int _fd_turnstile_state    = 0;                     \
    1013           9 :     int                 _fd_turnstile_blocking = (blocking);            \
    1014           9 :     for(;;) {                                                           \
    1015           9 :       int _fd_turnstile_tmp = _fd_turnstile_state;                      \
    1016           9 :       if( FD_LIKELY( !_fd_turnstile_tmp ) &&                            \
    1017           9 :           FD_LIKELY( !FD_ATOMIC_CAS( &_fd_turnstile_state, 0, 1 ) ) ) { \
    1018           9 :         FD_COMPILER_MFENCE();                                           \
    1019           9 :         do
    1020             : 
    1021             : #define FD_TURNSTILE_BLOCKED     \
    1022           9 :         while(0);                \
    1023           9 :         FD_COMPILER_MFENCE();    \
    1024           9 :         _fd_turnstile_state = 0; \
    1025           9 :         FD_COMPILER_MFENCE();    \
    1026           9 :         break;                   \
    1027           9 :       }                          \
    1028           9 :       FD_COMPILER_MFENCE();      \
    1029           0 :       do
    1030             : 
    1031             : #define FD_TURNSTILE_END                                             \
    1032           0 :       while(0);                                                      \
    1033           0 :       FD_COMPILER_MFENCE();                                          \
    1034           0 :       if( !_fd_turnstile_blocking ) break; /* likely compile time */ \
    1035           0 :       FD_SPIN_PAUSE();                                               \
    1036           0 :     }                                                                \
    1037           9 :   } while(0)
    1038             : 
    1039             : #else /* Only one thread in the process */
    1040             : 
    1041             : #ifndef FD_TL
    1042             : #define FD_TL /**/
    1043             : #endif
    1044             : 
    1045             : #define FD_ONCE_BEGIN do {                       \
    1046             :     static int _fd_once_block_state = 0;         \
    1047             :     if( FD_UNLIKELY( !_fd_once_block_state ) ) { \
    1048             :       do
    1049             : 
    1050             : #define FD_ONCE_END             \
    1051             :       while(0);                 \
    1052             :       _fd_once_block_state = 1; \
    1053             :     }                           \
    1054             :   } while(0)
    1055             : 
    1056             : #define FD_THREAD_ONCE_BEGIN FD_ONCE_BEGIN
    1057             : #define FD_THREAD_ONCE_END   FD_ONCE_END
    1058             : 
    1059             : #define FD_TURNSTILE_BEGIN(blocking) do { \
    1060             :     (void)(blocking);                     \
    1061             :     FD_COMPILER_MFENCE();                 \
    1062             :     if( 1 ) {                             \
    1063             :       do
    1064             : 
    1065             : #define FD_TURNSTILE_BLOCKED \
    1066             :       while(0);              \
    1067             :     } else {                 \
    1068             :       do
    1069             : 
    1070             : #define FD_TURNSTILE_END  \
    1071             :       while(0);           \
    1072             :     }                     \
    1073             :     FD_COMPILER_MFENCE(); \
    1074             :   } while(0)
    1075             : 
    1076             : #endif
    1077             : 
    1078             : /* An ideal fd_clock_func_t is a function such that:
    1079             : 
    1080             :      long dx = clock( args );
    1081             :      ... stuff ...
    1082             :      dx = clock( args ) - dx;
    1083             : 
    1084             :    yields a strictly positive dx where dx approximates the amount of
    1085             :    wallclock time elapsed on the caller in some clock specific unit
    1086             :    (e.g. nanoseconds, CPU ticks, etc) for a reasonable amount of "stuff"
    1087             :    (including no "stuff").  args allows arbitrary clock specific context
    1088             :    to be passed to the clock implication.  (clocks that need a non-const
    1089             :    args can cast away the const in the implementation or cast the
    1090             :    function pointer as necessary.) */
    1091             : 
    1092             : typedef long (*fd_clock_func_t)( void const * args );
    1093             : 
    1094             : FD_PROTOTYPES_BEGIN
    1095             : 
    1096             : /* fd_memcpy(d,s,sz):  On modern x86 in some circumstances, rep mov will
    1097             :    be faster than memcpy under the hood (basically due to RFO /
    1098             :    read-for-ownership optimizations in the cache protocol under the hood
    1099             :    that aren't easily done from the ISA ... see Intel docs on enhanced
    1100             :    rep mov).  Compile time configurable though as this is not always
    1101             :    true.  So application can tune to taste.  Hard to beat rep mov for
    1102             :    code density though (2 bytes) and pretty hard to beat in situations
    1103             :    needing a completely generic memcpy.  But it can be beaten in
    1104             :    specialized situations for the usual reasons. */
    1105             : 
    1106             : /* FIXME: CONSIDER MEMCMP TOO! */
    1107             : /* FIXME: CONSIDER MEMCPY RELATED FUNC ATTRS */
    1108             : 
    1109             : #ifndef FD_USE_ARCH_MEMCPY
    1110             : #define FD_USE_ARCH_MEMCPY 0
    1111             : #endif
    1112             : 
    1113             : #if FD_HAS_X86 && FD_USE_ARCH_MEMCPY && !defined(CBMC) && !FD_HAS_DEEPASAN && !FD_HAS_MSAN
    1114             : 
    1115             : static inline void *
    1116             : fd_memcpy( void       * FD_RESTRICT d,
    1117             :            void const * FD_RESTRICT s,
    1118   521160321 :            ulong                    sz ) {
    1119   521160321 :   void * p = d;
    1120   521160321 :   __asm__ __volatile__( "rep movsb" : "+D" (p), "+S" (s), "+c" (sz) :: "memory" );
    1121   521160321 :   return d;
    1122   521160321 : }
    1123             : 
    1124             : #elif FD_HAS_MSAN
    1125             : 
    1126             : void * __msan_memcpy( void * dest, void const * src, ulong n );
    1127             : 
    1128             : static inline void *
    1129             : fd_memcpy( void       * FD_RESTRICT d,
    1130             :            void const * FD_RESTRICT s,
    1131             :            ulong                    sz ) {
    1132             :   return __msan_memcpy( d, s, sz );
    1133             : }
    1134             : 
    1135             : #else
    1136             : 
    1137             : static inline void *
    1138             : fd_memcpy( void       * FD_RESTRICT d,
    1139             :            void const * FD_RESTRICT s,
    1140   995525749 :            ulong                    sz ) {
    1141             : #if defined(CBMC) || FD_HAS_ASAN
    1142             :   if( FD_UNLIKELY( !sz ) ) return d; /* Standard says sz 0 is UB, uncomment if target is insane and doesn't treat sz 0 as a nop */
    1143             : #endif
    1144   995525749 :   return memcpy( d, s, sz );
    1145   995525749 : }
    1146             : 
    1147             : #endif
    1148             : 
    1149             : /* fd_memset(d,c,sz): architecturally optimized memset.  See fd_memcpy
    1150             :    for considerations. */
    1151             : 
    1152             : /* FIXME: CONSIDER MEMSET RELATED FUNC ATTRS */
    1153             : 
    1154             : #ifndef FD_USE_ARCH_MEMSET
    1155             : #define FD_USE_ARCH_MEMSET 0
    1156             : #endif
    1157             : 
    1158             : #if FD_HAS_X86 && FD_USE_ARCH_MEMSET && !defined(CBMC) && !FD_HAS_DEEPASAN && !FD_HAS_MSAN
    1159             : 
    1160             : static inline void *
    1161             : fd_memset( void  * d,
    1162             :            int     c,
    1163   121617507 :            ulong   sz ) {
    1164   121617507 :   void * p = d;
    1165   121617507 :   __asm__ __volatile__( "rep stosb" : "+D" (p), "+c" (sz) : "a" (c) : "memory" );
    1166   121617507 :   return d;
    1167   121617507 : }
    1168             : 
    1169             : #else
    1170             : 
    1171             : static inline void *
    1172             : fd_memset( void  * d,
    1173             :            int     c,
    1174   241731182 :            ulong   sz ) {
    1175             : # ifdef CBMC
    1176             :   if( FD_UNLIKELY( !sz ) ) return d; /* See fd_memcpy note */
    1177             : # endif
    1178   241731182 :   return memset( d, c, sz );
    1179   241731182 : }
    1180             : 
    1181             : #endif
    1182             : 
    1183             : /* C23 has memset_explicit, i.e. a memset that can't be removed by the
    1184             :    optimizer. This is our own equivalent. */
    1185             : 
    1186             : static void * (* volatile fd_memset_explicit)(void *, int, size_t) = memset;
    1187             : 
    1188             : /* fd_memeq(s0,s1,sz):  Compares two blocks of memory.  Returns 1 if
    1189             :    equal or sz is zero and 0 otherwise.  No memory accesses made if sz
    1190             :    is zero (pointers may be invalid).  On x86, uses repe cmpsb which is
    1191             :    preferable to __builtin_memcmp in some cases. */
    1192             : 
    1193             : #ifndef FD_USE_ARCH_MEMEQ
    1194             : #define FD_USE_ARCH_MEMEQ 0
    1195             : #endif
    1196             : 
    1197             : #if FD_HAS_X86 && FD_USE_ARCH_MEMEQ && defined(__GCC_ASM_FLAG_OUTPUTS__) && __STDC_VERSION__>=199901L
    1198             : 
    1199             : FD_FN_PURE static inline int
    1200             : fd_memeq( void const * s0,
    1201             :           void const * s1,
    1202             :           ulong        sz ) {
    1203             :   /* ZF flag is set and exported in two cases:
    1204             :       a) size is zero (via test)
    1205             :       b) buffer is equal (via repe cmpsb) */
    1206             :   int r;
    1207             :   __asm__( "test %3, %3;"
    1208             :            "repe cmpsb"
    1209             :          : "=@cce" (r), "+S" (s0), "+D" (s1), "+c" (sz)
    1210             :          : "m" (*(char const (*)[sz]) s0), "m" (*(char const (*)[sz]) s1)
    1211             :          : "cc" );
    1212             :   return r;
    1213             : }
    1214             : 
    1215             : #else
    1216             : 
    1217             : FD_FN_PURE static inline int
    1218             : fd_memeq( void const * s1,
    1219             :           void const * s2,
    1220    15140742 :           ulong        sz ) {
    1221    15140742 :   return 0==memcmp( s1, s2, sz );
    1222    15140742 : }
    1223             : 
    1224             : #endif
    1225             : 
    1226             : /* fd_hash(seed,buf,sz), fd_hash_memcpy(seed,d,s,sz):  High quality
    1227             :    (full avalanche) high speed variable length buffer -> 64-bit hash
    1228             :    function (memcpy_hash is often as fast as plain memcpy).  Based on
    1229             :    the xxhash-r39 (open source BSD licensed) implementation.  In-place
    1230             :    and out-of-place variants provided (out-of-place variant assumes dst
    1231             :    and src do not overlap).  Caller promises valid input arguments,
    1232             :    cannot fail given valid inputs arguments.  sz==0 is fine. */
    1233             : 
    1234             : FD_FN_PURE ulong
    1235             : fd_hash( ulong        seed,
    1236             :          void const * buf,
    1237             :          ulong        sz );
    1238             : 
    1239             : ulong
    1240             : fd_hash_memcpy( ulong                    seed,
    1241             :                 void       * FD_RESTRICT d,
    1242             :                 void const * FD_RESTRICT s,
    1243             :                 ulong                    sz );
    1244             : 
    1245             : #ifndef FD_TICKCOUNT_STYLE
    1246             : #if FD_HAS_X86 /* Use RDTSC */
    1247             : #define FD_TICKCOUNT_STYLE 1
    1248             : #else /* Use portable fallback */
    1249             : #define FD_TICKCOUNT_STYLE 0
    1250             : #endif
    1251             : #endif
    1252             : 
    1253             : #if FD_TICKCOUNT_STYLE==0 /* Portable fallback (slow).  Ticks at 1 ns / tick */
    1254             : 
    1255             : #define fd_tickcount() fd_log_wallclock() /* TODO: fix ugly pre-log usage */
    1256             : 
    1257             : #elif FD_TICKCOUNT_STYLE==1 /* RTDSC (fast) */
    1258             : 
    1259             : /* fd_tickcount:  Reads the hardware invariant tickcounter ("RDTSC").
    1260             :    This monotonically increases at an approximately constant rate
    1261             :    relative to the system wallclock and is synchronous across all CPUs
    1262             :    on a host.
    1263             : 
    1264             :    The rate this ticks at is not precisely defined (see Intel docs for
    1265             :    more details) but it is typically in the ballpark of the CPU base
    1266             :    clock frequency.  The relationship to the wallclock is very well
    1267             :    approximated as linear over short periods of time (i.e. less than a
    1268             :    fraction of a second) and this should not exhibit any sudden changes
    1269             :    in its rate relative to the wallclock.  Notably, its rate is not
    1270             :    directly impacted by CPU clock frequency adaptation / Turbo mode (see
    1271             :    other Intel performance monitoring counters for various CPU cycle
    1272             :    counters).  It can drift over longer period time for the usual clock
    1273             :    synchronization reasons.
    1274             : 
    1275             :    This is a reasonably fast O(1) cost (~6-8 ns on recent Intel).
    1276             :    Because of all compiler options and parallel execution going on in
    1277             :    modern CPUs cores, other instructions might be reordered around this
    1278             :    by the compiler and/or CPU.  It is up to the user to do lower level
    1279             :    tricks as necessary when the precise location of this in the
    1280             :    execution stream and/or when executed by the CPU is needed.  (This is
    1281             :    often unnecessary as such levels of precision are not frequently
    1282             :    required and often have self-defeating overheads.)
    1283             : 
    1284             :    It is worth noting that RDTSC and/or (even more frequently) lower
    1285             :    level performance counters are often restricted from use in user
    1286             :    space applications.  It is recommended that applications use this
    1287             :    primarily for debugging / performance tuning on unrestricted hosts
    1288             :    and/or when the developer is confident that applications using this
    1289             :    will have appropriate permissions when deployed. */
    1290             : 
    1291  4632056166 : #define fd_tickcount() ((long)__builtin_ia32_rdtsc())
    1292             : 
    1293             : #else
    1294             : #error "Unknown FD_TICKCOUNT_STYLE"
    1295             : #endif
    1296             : 
    1297             : long _fd_tickcount( void const * _ ); /* fd_clock_func_t compat */
    1298             : 
    1299             : #if FD_HAS_HOSTED
    1300             : 
    1301             : /* fd_yield yields the calling thread to the operating system scheduler. */
    1302             : 
    1303             : void
    1304             : fd_yield( void );
    1305             : 
    1306             : #endif
    1307             : 
    1308             : FD_PROTOTYPES_END
    1309             : 
    1310             : #endif /* HEADER_fd_src_util_fd_util_base_h */

Generated by: LCOV version 1.14