LCOV - code coverage report
Current view: top level - util - fd_util_base.h (source / functions) Hit Total Coverage
Test: cov.lcov Lines: 85 89 95.5 %
Date: 2025-01-08 12:08:44 Functions: 271 3405 8.0 %

          Line data    Source code
       1             : #ifndef HEADER_fd_src_util_fd_util_base_h
       2             : #define HEADER_fd_src_util_fd_util_base_h
       3             : 
       4             : /* Base development environment */
       5             : 
       6             : /* Compiler checks ****************************************************/
       7             : 
       8             : #ifdef __cplusplus
       9             : 
      10             : #if __cplusplus<201703L
      11             : #error "Firedancer requires C++17 or later"
      12             : #endif
      13             : 
      14             : #else
      15             : 
      16             : #if __STDC_VERSION__<201710L
      17             : #error "Firedancer requires C Standard version C17 or later"
      18             : #endif
      19             : 
      20             : #endif //__cplusplus
      21             : 
      22             : /* Versioning macros **************************************************/
      23             : 
      24             : /* FD_VERSION_{MAJOR,MINOR,PATCH} programmatically specify the
      25             :    firedancer version. */
      26             : 
      27           0 : #define FD_VERSION_MAJOR (0)
      28           0 : #define FD_VERSION_MINOR (0)
      29           0 : #define FD_VERSION_PATCH (0)
      30             : 
      31             : /* Build target capabilities ******************************************/
      32             : 
      33             : /* Different build targets often have different levels of support for
      34             :    various language and hardware features.  The presence of various
      35             :    features can be tested at preprocessor, compile, or run time via the
      36             :    below capability macros.
      37             : 
      38             :    Code that does not exploit any of these capabilities written within
      39             :    the base development environment should be broadly portable across a
      40             :    range of build targets ranging from on-chain virtual machines to
      41             :    commodity hosts to custom hardware.
      42             : 
      43             :    As such, highly portable yet high performance code is possible by
      44             :    writing generic implementations that do not exploit any of the below
      45             :    capabilities as a portable fallback along with build target specific
      46             :    optimized implementations that are invoked when the build target
      47             :    supports the appropriate capabilities.
      48             : 
      49             :    The base development itself provide lots of functionality to help
      50             :    with implementing portable fallbacks while making very minimal
      51             :    assumptions about the build targets and zero use of 3rd party
      52             :    libraries (these might make unknown additional assumptions about the
      53             :    build target, including availability of a quality implementation of
      54             :    the library on the build target). */
      55             : 
      56             : /* FD_HAS_HOSTED:  If the build target is hosted (e.g. resides on a host
      57             :    with a POSIX-ish environment ... practically speaking, stdio.h,
      58             :    stdlib.h, unistd.h, et al more or less behave normally ...
      59             :    pedantically XOPEN_SOURCE=700), FD_HAS_HOSTED will be 1.  It will be
      60             :    zero otherwise. */
      61             : 
      62             : #ifndef FD_HAS_HOSTED
      63             : #define FD_HAS_HOSTED 0
      64             : #endif
      65             : 
      66             : /* FD_HAS_ATOMIC:  If the build target supports atomic operations
      67             :    between threads accessing a common memory region (include threads
      68             :    that reside in different processes on a host communicating via a
      69             :    shared memory region with potentially different local virtual
      70             :    mappings).  Practically speaking, does atomic compare-and-swap et al
      71             :    work? */
      72             : 
      73             : #ifndef FD_HAS_ATOMIC
      74             : #define FD_HAS_ATOMIC 0
      75             : #endif
      76             : 
      77             : /* FD_HAS_THREADS:  If the build target supports a POSIX-ish notion of
      78             :    threads (e.g. practically speaking, global variables declared within
      79             :    a compile unit are visible to more than one thread of execution,
      80             :    pthreads.h / threading parts of C standard, the atomics parts of the
      81             :    C standard, ... more or less work normally), FD_HAS_THREADS will be
      82             :    1.  It will be zero otherwise.  FD_HAS_THREADS implies FD_HAS_HOSTED
      83             :    and FD_HAS_ATOMIC. */
      84             : 
      85             : #ifndef FD_HAS_THREADS
      86             : #define FD_HAS_THREADS 0
      87             : #endif
      88             : 
      89             : /* FD_HAS_INT128:  If the build target supports reasonably efficient
      90             :    128-bit wide integer operations, define FD_HAS_INT128 to 1 to enable
      91             :    use of them in implementations. */
      92             : 
      93             : #ifndef FD_HAS_INT128
      94             : #define FD_HAS_INT128 0
      95             : #endif
      96             : 
      97             : /* FD_HAS_DOUBLE:  If the build target supports reasonably efficient
      98             :    IEEE 754 64-bit wide double precision floating point options, define
      99             :    FD_HAS_DOUBLE to 1 to enable use of them in implementations.  Note
     100             :    that even if the build target does not, va_args handling in the C /
     101             :    C++ language requires promotion of a float in an va_arg list to a
     102             :    double.  Thus, C / C++ language that support IEEE 754 float also
     103             :    implies a minimum level of support for double (though not necessarily
     104             :    efficient or IEEE 754).  That is, even if a target does not have
     105             :    FD_HAS_DOUBLE, there might still be limited use of double in va_arg
     106             :    list handling. */
     107             : 
     108             : #ifndef FD_HAS_DOUBLE
     109             : #define FD_HAS_DOUBLE 0
     110             : #endif
     111             : 
     112             : /* FD_HAS_ALLOCA:  If the build target supports fast alloca-style
     113             :    dynamic stack memory allocation (e.g. alloca.h / __builtin_alloca
     114             :    more or less work normally), define FD_HAS_ALLOCA to 1 to enable use
     115             :    of it in implementations. */
     116             : 
     117             : #ifndef FD_HAS_ALLOCA
     118             : #define FD_HAS_ALLOCA 0
     119             : #endif
     120             : 
     121             : /* FD_HAS_X86:  If the build target supports x86 specific features and
     122             :    can benefit from x86 specific optimizations, define FD_HAS_X86.  Code
     123             :    needing more specific target features (Intel / AMD / SSE / AVX2 /
     124             :    AVX512 / etc) can specialize further as necessary with even more
     125             :    precise capabilities (that in turn imply FD_HAS_X86). */
     126             : 
     127             : #ifndef FD_HAS_X86
     128             : #define FD_HAS_X86 0
     129             : #endif
     130             : 
     131             : /* These allow even more precise targeting for X86. */
     132             : 
     133             : /* FD_HAS_SSE indicates the target supports Intel SSE4 style SIMD
     134             :    (basically do the 128-bit wide parts of "x86intrin.h" work).
     135             :    Recommend using the simd/fd_sse.h APIs instead of raw Intel
     136             :    intrinsics for readability and to facilitate portability to non-x86
     137             :    platforms.  Implies FD_HAS_X86. */
     138             : 
     139             : #ifndef FD_HAS_SSE
     140             : #define FD_HAS_SSE 0
     141             : #endif
     142             : 
     143             : /* FD_HAS_AVX indicates the target supports Intel AVX2 style SIMD
     144             :    (basically do the 256-bit wide parts of "x86intrin.h" work).
     145             :    Recommend using the simd/fd_avx.h APIs instead of raw Intel
     146             :    intrinsics for readability and to facilitate portability to non-x86
     147             :    platforms.  Implies FD_HAS_SSE. */
     148             : 
     149             : #ifndef FD_HAS_AVX
     150             : #define FD_HAS_AVX 0
     151             : #endif
     152             : 
     153             : /* FD_HAS_AVX512 indicates the target supports Intel AVX-512 style SIMD
     154             :    (basically do the 512-bit wide parts of "x86intrin.h" work).
     155             :    Recommend using the simd/fd_avx512.h APIs instead of raw Intel
     156             :    intrinsics for readability and to facilitate portability to non-x86
     157             :    platforms.  Implies FD_HAS_AVX. */
     158             : 
     159             : #ifndef FD_HAS_AVX512
     160             : #define FD_HAS_AVX512 0
     161             : #endif
     162             : 
     163             : /* FD_HAS_SHANI indicates that the target supports Intel SHA extensions
     164             :    which accelerate SHA-1 and SHA-256 computation.  This extension is
     165             :    also called SHA-NI or SHA_NI (Secure Hash Algorithm New
     166             :    Instructions).  Although proposed in 2013, they're only supported on
     167             :    Intel Ice Lake and AMD Zen CPUs and newer.  Implies FD_HAS_AVX. */
     168             : 
     169             : #ifndef FD_HAS_SHANI
     170             : #define FD_HAS_SHANI 0
     171             : #endif
     172             : 
     173             : /* FD_HAS_GFNI indicates that the target supports Intel Galois Field
     174             :    extensions, which accelerate operations over binary extension fields,
     175             :    especially GF(2^8).  These instructions are supported on Intel Ice
     176             :    Lake and newer and AMD Zen4 and newer CPUs.  Implies FD_HAS_AVX. */
     177             : 
     178             : #ifndef FD_HAS_GFNI
     179             : #define FD_HAS_GFNI 0
     180             : #endif
     181             : 
     182             : /* FD_HAS_AESNI indicates that the target supports AES-NI extensions,
     183             :    which accelerate AES encryption and decryption.  While AVX predates
     184             :    the original AES-NI extension, the combination of AES-NI+AVX adds
     185             :    additional opcodes (such as vaesenc, a more flexible variant of
     186             :    aesenc).  Thus, implies FD_HAS_AVX.  A conservative estimate for
     187             :    minimum platform support is Intel Haswell or AMD Zen. */
     188             : 
     189             : #ifndef FD_HAS_AESNI
     190             : #define FD_HAS_AESNI 0
     191             : #endif
     192             : 
     193             : /* FD_HAS_LZ4 indicates that the target supports LZ4 compression.
     194             :    Roughly, does "#include <lz4.h>" and the APIs therein work? */
     195             : 
     196             : #ifndef FD_HAS_LZ4
     197             : #define FD_HAS_LZ4 0
     198             : #endif
     199             : 
     200             : /* FD_HAS_ZSTD indicates that the target supports ZSTD compression.
     201             :    Roughly, does "#include <zstd.h>" and the APIs therein work? */
     202             : 
     203             : #ifndef FD_HAS_ZSTD
     204             : #define FD_HAS_ZSTD 0
     205             : #endif
     206             : 
     207             : /* FD_HAS_COVERAGE indicates that the build target is built with coverage instrumentation. */
     208             : 
     209             : #ifndef FD_HAS_COVERAGE
     210             : #define FD_HAS_COVERAGE 0
     211             : #endif
     212             : 
     213             : /* FD_HAS_ASAN indicates that the build target is using ASAN. */
     214             : 
     215             : #ifndef FD_HAS_ASAN
     216             : #define FD_HAS_ASAN 0
     217             : #endif
     218             : 
     219             : /* FD_HAS_UBSAN indicates that the build target is using UBSAN. */
     220             : 
     221             : #ifndef FD_HAS_UBSAN
     222             : #define FD_HAS_UBSAN 0
     223             : #endif
     224             : 
     225             : /* FD_HAS_DEEPASAN indicates that the build target is using ASAN with manual
     226             :    memory poisoning for fd_alloc, fd_wksp, and fd_scratch. */
     227             : 
     228             : #ifndef FD_HAS_DEEPASAN
     229             : #define FD_HAS_DEEPASAN 0
     230             : #endif
     231             : 
     232             : /* Base development environment ***************************************/
     233             : 
     234             : /* The functionality provided by these vanilla headers are always
     235             :    available within the base development environment.  Notably, stdio.h
     236             :    / stdlib.h / et al at are not included here as these make lots of
     237             :    assumptions about the build target that may not be true (especially
     238             :    for on-chain and custom hardware use).  Code should prefer the fd
     239             :    util equivalents for such functionality when possible. */
     240             : 
     241             : #include <stdalign.h>
     242             : #include <string.h>
     243             : #include <limits.h>
     244             : #include <float.h>
     245             : 
     246             : /* Work around some library naming irregularities */
     247             : /* FIXME: Consider this for FLOAT/FLT, DOUBLE/DBL too? */
     248             : 
     249           3 : #define  SHORT_MIN  SHRT_MIN
     250           3 : #define  SHORT_MAX  SHRT_MAX
     251   777916527 : #define USHORT_MAX USHRT_MAX
     252             : 
     253             : /* Primitive types ****************************************************/
     254             : 
     255             : /* These typedefs provide single token regularized names for all the
     256             :    primitive types in the base development environment:
     257             : 
     258             :      char !
     259             :      schar !   short   int   long   int128 !!
     260             :      uchar    ushort  uint  ulong  uint128 !!
     261             :      float
     262             :      double !!!
     263             : 
     264             :    ! Does not assume the sign of char.  A naked char should be treated
     265             :      as cstr character and mathematical operations should be avoided on
     266             :      them.  This is less than ideal as the patterns for integer types in
     267             :      the C/C++ language spec itself are far more consistent with a naked
     268             :      char naturally being treated as signed (see above).  But there are
     269             :      lots of conflicts between architectures, languages and standard
     270             :      libraries about this so any use of a naked char shouldn't assume
     271             :      the sign ... sigh.
     272             : 
     273             :    !! Only available if FD_HAS_INT128 is defined
     274             : 
     275             :    !!! Should only used if FD_HAS_DOUBLE is defined but see note in
     276             :        FD_HAS_DOUBLE about C/C++ silent promotions of float to double in
     277             :        va_arg lists.
     278             : 
     279             :    Note also that these token names more naturally interoperate with
     280             :    integer constant declarations, type generic code generation
     281             :    techniques, with printf-style format strings than the stdint.h /
     282             :    inttypes.h handling.
     283             : 
     284             :    To minimize portability issues, unexpected silent type conversion
     285             :    issues, align with typical developer implicit usage, align with
     286             :    typical build target usage, ..., assumes char / short / int / long
     287             :    are 8 / 16 / 32 / 64 twos complement integers and float is IEEE-754
     288             :    single precision.  Further assumes little endian, truncating signed
     289             :    integer division, sign extending (arithmetic) signed right shift and
     290             :    signed left shift behaves the same as an unsigned left shift from bit
     291             :    operations point of view (technically the standard says signed left
     292             :    shift is undefined if the result would overflow).  Also, except for
     293             :    int128/uint128, assumes that aligned access to these will be
     294             :    naturally atomic.  Lastly assumes that unaligned access to these is
     295             :    functionally valid but does not assume that unaligned access to these
     296             :    is efficient or atomic.
     297             : 
     298             :    For values meant to be held in registers, code should prefer long /
     299             :    ulong types (improves asm generation given the prevalence of 64-bit
     300             :    targets and also to avoid lots of tricky bugs with silent promotions
     301             :    in the language ... e.g. ushort should ideally only be used for
     302             :    in-memory representations).
     303             : 
     304             :    These are currently not prefixed given how often they are used.  If
     305             :    this becomes problematic prefixes can be added as necessary.
     306             :    Specifically, C++ allows typedefs to be defined multiple times so
     307             :    long as they are equivalent.  Inequivalent collisions are not
     308             :    supported but should be rare (e.g. if a 3rd party header thinks
     309             :    "ulong" should be something other an "unsigned long", the 3rd party
     310             :    header probably should be nuked from orbit).  C11 and forward also
     311             :    allow multiple equivalent typedefs.  C99 and earlier don't but this
     312             :    is typically only a warning and then only if pedantic warnings are
     313             :    enabled.  Thus, if we want to support users using C99 and earlier who
     314             :    want to do a strict compile and have a superfluous collision with
     315             :    these types in other libraries, uncomment the below (or do something
     316             :    equivalent for the compiler). */
     317             : 
     318             : //#pragma GCC diagnostic push
     319             : //#pragma GCC diagnostic ignored "-Wpedantic"
     320             : 
     321             : typedef signed char schar; /* See above note of sadness */
     322             : 
     323             : typedef unsigned char  uchar;
     324             : typedef unsigned short ushort;
     325             : typedef unsigned int   uint;
     326             : typedef unsigned long  ulong;
     327             : 
     328             : #if FD_HAS_INT128
     329             : 
     330             : __extension__ typedef          __int128  int128;
     331             : __extension__ typedef unsigned __int128 uint128;
     332             : 
     333  1200000045 : #define UINT128_MAX (~(uint128)0)
     334           6 : #define  INT128_MAX ((int128)(UINT128_MAX>>1))
     335           3 : #define  INT128_MIN (-INT128_MAX-(int128)1)
     336             : 
     337             : #endif
     338             : 
     339             : //#pragma GCC diagnostic pop
     340             : 
     341             : /* Compiler tricks ****************************************************/
     342             : 
     343             : /* FD_STRINGIFY,FD_CONCAT{2,3,4}:  Various macros for token
     344             :    stringification and pasting.  FD_STRINGIFY returns the argument as a
     345             :    cstr (e.g. FD_STRINGIFY(foo) -> "foo").  FD_CONCAT* pastes the tokens
     346             :    together into a single token (e.g.  FD_CONCAT3(a,b,c) -> abc).  The
     347             :    EXPAND variants first expand their arguments and then do the token
     348             :    operation (e.g.  FD_EXPAND_THEN_STRINGIFY(__LINE__) -> "104" if done
     349             :    on line 104 of the source code file). */
     350             : 
     351             : #define FD_STRINGIFY(x)#x
     352     4505091 : #define FD_CONCAT2(a,b)a##b
     353       17118 : #define FD_CONCAT3(a,b,c)a##b##c
     354     5522688 : #define FD_CONCAT4(a,b,c,d)a##b##c##d
     355             : 
     356             : #define FD_EXPAND_THEN_STRINGIFY(x)FD_STRINGIFY(x)
     357     4505091 : #define FD_EXPAND_THEN_CONCAT2(a,b)FD_CONCAT2(a,b)
     358 >38188*10^7 : #define FD_EXPAND_THEN_CONCAT3(a,b,c)FD_CONCAT3(a,b,c)
     359     5522688 : #define FD_EXPAND_THEN_CONCAT4(a,b,c,d)FD_CONCAT4(a,b,c,d)
     360             : 
     361             : /* FD_VA_ARGS_SELECT(__VA_ARGS__,e32,e31,...e1):  Macro that expands to
     362             :    en at compile time where n is number of items in the __VA_ARGS__
     363             :    list.  If __VA_ARGS__ is empty, returns e1.  Assumes __VA_ARGS__ has
     364             :    at most 32 arguments.  Useful for making a variadic macro whose
     365             :    behavior depends on the number of arguments in __VA_ARGS__. */
     366             : 
     367             : #define FD_VA_ARGS_SELECT(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,a,b,c,d,e,f,_,...)_
     368             : 
     369             : /* FD_SRC_LOCATION returns a const cstr holding the line of code where
     370             :    FD_SRC_LOCATION was used. */
     371             : 
     372             : #define FD_SRC_LOCATION __FILE__ "(" FD_EXPAND_THEN_STRINGIFY(__LINE__) ")"
     373             : 
     374             : /* FD_STATIC_ASSERT tests at compile time if c is non-zero.  If not,
     375             :    it aborts the compile with an error.  err itself should be a token
     376             :    (e.g. not a string, no whitespace, etc). */
     377             : 
     378             : #ifdef __cplusplus
     379             : #define FD_STATIC_ASSERT(c,err) static_assert(c, #err)
     380             : #else
     381       17668 : #define FD_STATIC_ASSERT(c,err) _Static_assert(c, #err)
     382             : #endif
     383             : 
     384             : /* FD_ADDRESS_OF_PACKED_MEMBER(x):  Linguistically does &(x) but without
     385             :    recent compiler complaints that &x might be unaligned if x is a
     386             :    member of a packed datastructure.  (Often needed for interfacing with
     387             :    hardware / packets / etc.) */
     388             : 
     389           3 : #define FD_ADDRESS_OF_PACKED_MEMBER( x ) (__extension__({                                      \
     390           3 :     char * _fd_aopm = (char *)&(x);                                                            \
     391           3 :     __asm__( "# FD_ADDRESS_OF_PACKED_MEMBER(" #x ") @" FD_SRC_LOCATION : "+r" (_fd_aopm) :: ); \
     392           3 :     (__typeof__(&(x)))_fd_aopm;                                                                \
     393           3 :   }))
     394             : 
     395             : /* FD_PROTOTYPES_{BEGIN,END}:  Headers that might be included in C++
     396             :    source should encapsulate the prototypes of code and globals
     397             :    contained in compilation units compiled as C with a
     398             :    FD_PROTOTYPE_{BEGIN,END} pair. */
     399             : 
     400             : #ifdef __cplusplus
     401             : #define FD_PROTOTYPES_BEGIN extern "C" {
     402             : #else
     403             : #define FD_PROTOTYPES_BEGIN
     404             : #endif
     405             : 
     406             : #ifdef __cplusplus
     407             : #define FD_PROTOTYPES_END }
     408             : #else
     409             : #define FD_PROTOTYPES_END
     410             : #endif
     411             : 
     412             : /* FD_ASM_LG_ALIGN(lg_n) expands to an alignment assembler directive
     413             :    appropriate for the current architecture/ABI.  The resulting align
     414             :    is 2^(lg_n) bytes, i.e. FD_ASM_LG_ALIGN(3) aligns by 8 bytes. */
     415             : 
     416             : #if defined(__aarch64__)
     417             : #define FD_ASM_LG_ALIGN(lg_n) ".align " #lg_n "\n"
     418             : #elif defined(__x86_64__) || defined(__powerpc64__)
     419             : #define FD_ASM_LG_ALIGN(lg_n) ".p2align " #lg_n "\n"
     420             : #endif
     421             : 
     422             : /* FD_IMPORT declares a variable name and initializes with the contents
     423             :    of the file at path (with potentially some assembly directives for
     424             :    additional footer info).  It is equivalent to:
     425             : 
     426             :      type const name[] __attribute__((aligned(align))) = {
     427             : 
     428             :        ... code that would initialize the contents of name to the
     429             :        ... raw binary data found in the file at path at compile time
     430             :        ... (with any appended information as specified by footer)
     431             : 
     432             :      };
     433             : 
     434             :      ulong const name_sz = ... number of bytes pointed to by name;
     435             : 
     436             :    More precisely, this creates a symbol "name" in the object file that
     437             :    points to a read-only copy of the raw data in the file at "path" as
     438             :    it was at compile time.  2^lg_align specifies the minimum alignment
     439             :    required for the copy's first byte as an unsuffixed decimal integer.
     440             :    footer are assembly commands to permit additional data to be appended
     441             :    to the copy (use "" for footer if no footer is necessary).
     442             : 
     443             :    Then it exposes a pointer to this copy in the current compilation
     444             :    unit as name and the byte size as name_sz.  name_sz covers the first
     445             :    byte of the included data to the last byte of the footer inclusive.
     446             : 
     447             :    The dummy linker symbol _fd_import_name_sz will also be created in
     448             :    the object file as some under the hood magic to make this work.  This
     449             :    should not be used in any compile unit as some compilers (I'm looking
     450             :    at you clang-15, but apparently not clang-10) will sometimes mangle
     451             :    its value from what it was set to in the object file even marked as
     452             :    absolute in the object file.
     453             : 
     454             :    This should only be used at global scope and should be done at most
     455             :    once over all object files / libraries used to make a program.  If
     456             :    other compilation units want to make use of an import in a different
     457             :    compilation unit, they should declare:
     458             : 
     459             :      extern type const name[] __attribute__((aligned(align)));
     460             : 
     461             :    and/or:
     462             : 
     463             :      extern ulong const name_sz;
     464             : 
     465             :    as necessary (that is, do the usual to use name and name_sz as shown
     466             :    for the pseudo code above).
     467             : 
     468             :    Important safety tip!  gcc -M will generally not detect the
     469             :    dependency this creates between the importing file and the imported
     470             :    file.  This can cause incremental builds to miss changes to the
     471             :    imported file.  Ideally, we would have FD_IMPORT automatically do
     472             :    something like:
     473             : 
     474             :      _Pragma( "GCC dependency \"" path "\" )
     475             : 
     476             :    This doesn't work as is because _Pragma needs some macro expansion
     477             :    hacks to accept this (this is doable).  After that workaround, this
     478             :    still doesn't work because, due to tooling limitations, the pragma
     479             :    path is relative to the source file directory and the FD_IMPORT path
     480             :    is relative to the the make directory (working around this would
     481             :    require a __FILE__-like directive for the source code directory base
     482             :    path).  Even if that did exist, it might still not work because
     483             :    out-of-tree builds often require some substitutions to the gcc -M
     484             :    generated dependencies that this might not pick up (at least not
     485             :    without some build system surgery).  And then it still wouldn't work
     486             :    because gcc -M seems to ignore all of this anyways (which is the
     487             :    actual show stopper as this pragma does something subtly different
     488             :    than what the name suggests and there isn't any obvious support for a
     489             :    "pseudo-include".)  Another reminder that make clean and fast builds
     490             :    are our friend. */
     491             : 
     492             : #if defined(__ELF__)
     493             : 
     494             : #define FD_IMPORT( name, path, type, lg_align, footer )      \
     495             :   __asm__( ".section .rodata,\"a\",@progbits\n"              \
     496             :            ".type " #name ",@object\n"                       \
     497             :            ".globl " #name "\n"                              \
     498             :            FD_ASM_LG_ALIGN(lg_align)                         \
     499             :            #name ":\n"                                       \
     500             :            ".incbin \"" path "\"\n"                          \
     501             :            footer "\n"                                       \
     502             :            ".size " #name ",. - " #name "\n"                 \
     503             :            "_fd_import_" #name "_sz = . - " #name "\n"       \
     504             :            ".type " #name "_sz,@object\n"                    \
     505             :            ".globl " #name "_sz\n"                           \
     506             :            FD_ASM_LG_ALIGN(3)                                \
     507             :            #name "_sz:\n"                                    \
     508             :            ".quad _fd_import_" #name "_sz\n"                 \
     509             :            ".size " #name "_sz,8\n"                          \
     510             :            ".previous\n" );                                  \
     511             :   extern type  const name[] __attribute__((aligned(1<<(lg_align)))); \
     512             :   extern ulong const name##_sz
     513             : 
     514             : #elif defined(__MACH__)
     515             : 
     516             : #define FD_IMPORT( name, path, type, lg_align, footer )      \
     517             :   __asm__( ".section __DATA,__const\n"                       \
     518             :            ".globl _" #name "\n"                             \
     519             :            FD_ASM_LG_ALIGN(lg_align)                         \
     520             :            "_" #name ":\n"                                   \
     521             :            ".incbin \"" path "\"\n"                          \
     522             :            footer "\n"                                       \
     523             :            "_fd_import_" #name "_sz = . - _" #name "\n"      \
     524             :            ".globl _" #name "_sz\n"                          \
     525             :            FD_ASM_LG_ALIGN(3)                                \
     526             :            "_" #name "_sz:\n"                                \
     527             :            ".quad _fd_import_" #name "_sz\n"                 \
     528             :            ".previous\n" );                                  \
     529             :   extern type  const name[] __attribute__((aligned(1<<(lg_align)))); \
     530             :   extern ulong const name##_sz
     531             : 
     532             : #endif
     533             : 
     534             : /* FD_IMPORT_{BINARY,CSTR} are common cases for FD_IMPORT.
     535             : 
     536             :    In BINARY, the file is imported into the object file and exposed to
     537             :    the caller as a uchar binary data.  name_sz will be the number of
     538             :    bytes in the file at time of import.  name will have 128 byte
     539             :    alignment.
     540             : 
     541             :    In CSTR, the file is imported into the object caller with a '\0'
     542             :    termination appended and exposed to the caller as a cstr.  Assuming
     543             :    the file is text (i.e. has no internal '\0's), strlen(name) will the
     544             :    number of bytes in the file and name_sz will be strlen(name)+1.  name
     545             :    can have arbitrary alignment. */
     546             : 
     547             : #ifdef FD_IMPORT
     548             : #define FD_IMPORT_BINARY(name, path) FD_IMPORT( name, path, uchar, 7, ""        )
     549             : #define FD_IMPORT_CSTR(  name, path) FD_IMPORT( name, path,  char, 1, ".byte 0" )
     550             : #endif
     551             : 
     552             : /* Optimizer tricks ***************************************************/
     553             : 
     554             : /* FD_RESTRICT is a pointer modifier for to designate a pointer as
     555             :    restricted.  Hoops jumped because C++-17 still doesn't understand
     556             :    restrict ... sigh */
     557             : 
     558             : #ifndef FD_RESTRICT
     559             : #ifdef __cplusplus
     560             : #define FD_RESTRICT __restrict
     561             : #else
     562             : #define FD_RESTRICT restrict
     563             : #endif
     564             : #endif
     565             : 
     566             : /* fd_type_pun(p), fd_type_pun_const(p):  These allow use of type
     567             :    punning while keeping strict aliasing optimizations enabled (e.g.
     568             :    some UNIX APIs, like sockaddr related APIs are dependent on type
     569             :    punning).  These allow these API's to be used cleanly while keeping
     570             :    strict aliasing optimizations enabled and strict alias checking done. */
     571             : 
     572             : static inline void *
     573    55832808 : fd_type_pun( void * p ) {
     574    55832808 :   __asm__( "# fd_type_pun @" FD_SRC_LOCATION : "+r" (p) :: "memory" );
     575    55832808 :   return p;
     576    55832808 : }
     577             : 
     578             : static inline void const *
     579   238578943 : fd_type_pun_const( void const * p ) {
     580   238578943 :   __asm__( "# fd_type_pun_const @" FD_SRC_LOCATION : "+r" (p) :: "memory" );
     581   238578943 :   return p;
     582   238578943 : }
     583             : 
     584             : /* FD_{LIKELY,UNLIKELY}(c):  Evaluates c and returns whether it is
     585             :    logical true/false as long (1L/0L).  It also hints to the optimizer
     586             :    whether it should optimize for the case of c evaluating as
     587             :    true/false. */
     588             : 
     589 >14207*10^7 : #define FD_LIKELY(c)   __builtin_expect( !!(c), 1L )
     590 >61437*10^7 : #define FD_UNLIKELY(c) __builtin_expect( !!(c), 0L )
     591             : 
     592             : /* FD_FN_PURE hints to the optimizer that the function, roughly
     593             :    speaking, does not have side effects.  As such, the compiler can
     594             :    replace a call to the function with the result of an earlier call to
     595             :    that function provide the inputs and memory used hasn't changed.
     596             : 
     597             :    IMPORTANT SAFETY TIP!  Recent compilers seem to take an undocumented
     598             :    and debatable stance that pure functions do no writes to memory.
     599             :    This is a sufficient condition for the above but not a necessary one.
     600             : 
     601             :    Consider, for example, the real world case of an otherwise pure
     602             :    function that uses pass-by-reference to return more than one value
     603             :    (an unpleasant practice that is sadly often necessary because C/C++,
     604             :    compilers and underlying platform ABIs are very bad at helping
     605             :    developers simply and clearly express their intent to return multiple
     606             :    values and then generate good assembly for such).
     607             : 
     608             :    If called multiple times sequentially, all but the first call to such
     609             :    a "pure" function could be optimized away because the non-volatile
     610             :    memory writes done in the all but the 1st call for the
     611             :    pass-by-reference-returns write the same value to normal memory that
     612             :    was written on the 1st call.  That is, these calls return the same
     613             :    value for their direct return and do writes that do not have any
     614             :    visible effect.
     615             : 
     616             :    Thus, while it is safe for the compiler to eliminate all but the
     617             :    first call via techniques like common subexpression elimination, it
     618             :    is not safe for the compiler to infer that the first call did no
     619             :    writes.
     620             : 
     621             :    But recent compilers seem to do exactly that.
     622             : 
     623             :    Sigh ... we can't use FD_FN_PURE on such functions because of all the
     624             :    above linguistic, compiler, documentation and ABI infinite sadness.
     625             : 
     626             :    TL;DR To be safe against the above vagaries, recommend using
     627             :    FD_FN_PURE to annotate functions that do no memory writes (including
     628             :    trivial memory writes) and try to design HPC APIs to avoid returning
     629             :    multiple values as much as possible. */
     630             : 
     631             : #define FD_FN_PURE __attribute__((pure))
     632             : 
     633             : /* FD_FN_CONST is like pure but also, even stronger, indicates that the
     634             :    function does not depend on the state of memory. */
     635             : 
     636             : #define FD_FN_CONST __attribute__((const))
     637             : 
     638             : /* FD_FN_UNUSED indicates that it is okay if the function with static
     639             :    linkage is not used.  Allows working around -Winline in header only
     640             :    APIs where the compiler decides not to actually inline the function.
     641             :    (This belief, frequently promulgated by anti-macro cults, that "An
     642             :    Inline Function is As Fast As a Macro" ... an entire section in gcc's
     643             :    documentation devoted to it in fact ... remains among the biggest
     644             :    lies in computer science.  Yes, an inline function is as fast as a
     645             :    macro ... when the compiler actually decides to treat the inline
     646             :    keyword more than just for entertainment purposes only.  Which, as
     647             :    -Winline proves, it frequently doesn't.  Sigh ... force_inline like
     648             :    compiler extensions might be an alternative here but they have their
     649             :    own portability issues.) */
     650             : 
     651          42 : #define FD_FN_UNUSED __attribute__((unused))
     652             : 
     653             : /* FD_FN_UNSANITIZED tells the compiler to disable AddressSanitizer and
     654             :    UndefinedBehaviorSanitizer instrumentation.  For some functions, this
     655             :    can improve instrumented compile time by ~30x. */
     656             : 
     657             : #define FD_FN_UNSANITIZED __attribute__((no_sanitize("address", "undefined")))
     658             : 
     659             : /* FD_FN_SENSITIVE instruments the compiler to sanitize sensitive functions.
     660             :    https://eprint.iacr.org/2023/1713 (Sec 3.2)
     661             :    - Clear all registers with __attribute__((zero_call_used_regs("all")))
     662             :    - Clear stack with __attribute__((strub)), available in gcc 14+ */
     663             : 
     664             : #if __has_attribute(strub)
     665             : #define FD_FN_SENSITIVE __attribute__((strub)) __attribute__((zero_call_used_regs("all")))
     666             : #elif __has_attribute(zero_call_used_regs)
     667             : #define FD_FN_SENSITIVE __attribute__((zero_call_used_regs("all")))
     668             : #else
     669             : #define FD_FN_SENSITIVE
     670             : #endif
     671             : 
     672             : /* FD_PARAM_UNUSED indicates that it is okay if the function parameter is not
     673             :    used. */
     674             : 
     675             : #define FD_PARAM_UNUSED __attribute__((unused))
     676             : 
     677             : /* FD_TYPE_PACKED indicates that a type is to be packed, reseting its alignment
     678             :    to 1. */
     679             : 
     680             : #define FD_TYPE_PACKED __attribute__((packed))
     681             : 
     682             : /* FD_WARN_UNUSED tells the compiler the result (from a function) should
     683             :    be checked. This is useful to force callers to either check the result
     684             :    or deliberately and explicitly ignore it. Good for result codes and
     685             :    errors */
     686             : 
     687             : #define FD_WARN_UNUSED __attribute__ ((warn_unused_result))
     688             : 
     689             : /* FD_FALLTHRU tells the compiler that a case in a switch falls through
     690             :    to the next case. This avoids the compiler complaining, in cases where
     691             :    it is an intentional fall through.
     692             :    The "while(0)" avoids a compiler complaint in the event the case
     693             :    has no statement, example:
     694             :      switch( return_code ) {
     695             :        case RETURN_CASE_1: FD_FALLTHRU;
     696             :        case RETURN_CASE_2: FD_FALLTHRU;
     697             :        case RETURN_CASE_3:
     698             :          case_123();
     699             :        default:
     700             :          case_other();
     701             :      }
     702             : 
     703             :    See C++17 [[fallthrough]] and gcc __attribute__((fallthrough)) */
     704             : 
     705             : #define FD_FALLTHRU while(0) __attribute__((fallthrough))
     706             : 
     707             : /* FD_COMPILER_FORGET(var):  Tells the compiler that it shouldn't use
     708             :    any knowledge it has about the provided register-compatible variable
     709             :    var for optimizations going forward (i.e. the variable has changed in
     710             :    a deterministic but unknown-to-the-compiler way where the actual
     711             :    change is the identity operation).  Useful for inhibiting various
     712             :    branch nest misoptimizations (compilers unfortunately tend to
     713             :    radically underestimate the impact in raw average performance and
     714             :    jitter and the probability of branch mispredicts or the cost to the
     715             :    CPU of having lots of branches).  This is not asm volatile (use
     716             :    UNPREDICTABLE below for that) and has no clobbers.  So if var is not
     717             :    used after the forget, the compiler can optimize the FORGET away
     718             :    (along with operations preceding it used to produce var). */
     719             : 
     720 42548311777 : #define FD_COMPILER_FORGET(var) __asm__( "# FD_COMPILER_FORGET(" #var ")@" FD_SRC_LOCATION : "+r" (var) )
     721             : 
     722             : /* FD_COMPILER_UNPREDICTABLE(var):  Same as FD_COMPILER_FORGET(var) but
     723             :    the provided variable has changed in a non-deterministic way from the
     724             :    compiler's POV (e.g. the value in the variable on output should not
     725             :    be treated as a compile time constant even if it is one
     726             :    linguistically).  Useful for suppressing unwanted
     727             :    compile-time-const-based optimizations like hoisting operations with
     728             :    useful CPU side effects out of a critical loop. */
     729             : 
     730    31289889 : #define FD_COMPILER_UNPREDICTABLE(var) __asm__ __volatile__( "# FD_COMPILER_UNPREDICTABLE(" #var ")@" FD_SRC_LOCATION : "+r" (var) )
     731             : 
     732             : /* Atomic tricks ******************************************************/
     733             : 
     734             : /* FD_COMPILER_MFENCE():  Tells the compiler that that it can't move any
     735             :    memory operations (load or store) from before the MFENCE to after the
     736             :    MFENCE (and vice versa).  The processor itself might still reorder
     737             :    around the fence though (that requires platform specific fences). */
     738             : 
     739 >13047*10^7 : #define FD_COMPILER_MFENCE() __asm__ __volatile__( "# FD_COMPILER_MFENCE()@" FD_SRC_LOCATION ::: "memory" )
     740             : 
     741             : /* FD_SPIN_PAUSE():  Yields the logical core of the calling thread to
     742             :    the other logical cores sharing the same underlying physical core for
     743             :    a few clocks without yielding it to the operating system scheduler.
     744             :    Typically useful for shared memory spin polling loops, especially if
     745             :    hyperthreading is in use.  IMPORTANT SAFETY TIP!  This might act as a
     746             :    FD_COMPILER_MFENCE on some combinations of toolchains and targets
     747             :    (e.g. gcc documents that __builtin_ia32_pause also does a compiler
     748             :    memory) but this should not be relied upon for portable code
     749             :    (consider making this a compiler memory fence on all platforms?) */
     750             : 
     751             : #if FD_HAS_X86
     752 16618720462 : #define FD_SPIN_PAUSE() __builtin_ia32_pause()
     753             : #else
     754             : #define FD_SPIN_PAUSE() ((void)0)
     755             : #endif
     756             : 
     757             : /* FD_YIELD():  Yields the logical core of the calling thread to the
     758             :    operating system scheduler if a hosted target and does a spin pause
     759             :    otherwise. */
     760             : 
     761             : #if FD_HAS_HOSTED
     762       61767 : #define FD_YIELD() fd_yield()
     763             : #else
     764             : #define FD_YIELD() FD_SPIN_PAUSE()
     765             : #endif
     766             : 
     767             : /* FD_VOLATILE_CONST(x):  Tells the compiler is not able to predict the
     768             :    value obtained by dereferencing x and that dereferencing x might have
     769             :    other side effects (e.g. maybe another thread could change the value
     770             :    and the compiler has no way of knowing this).  Generally speaking,
     771             :    the volatile keyword is broken linguistically.  Volatility is not a
     772             :    property of the variable but of the dereferencing of a variable (e.g.
     773             :    what is volatile from the POV of a reader of a shared variable is not
     774             :    necessarily volatile from the POV a writer of that shared variable in
     775             :    a different thread). */
     776             : 
     777  2188607911 : #define FD_VOLATILE_CONST(x) (*((volatile const __typeof__((x)) *)&(x)))
     778             : 
     779             : /* FD_VOLATILE(x): tells the compiler is not able to predict the effect
     780             :    of modifying x and that dereferencing x might have other side effects
     781             :    (e.g. maybe another thread is spinning on x waiting for its value to
     782             :    change and the compiler has no way of knowing this). */
     783             : 
     784  1189982370 : #define FD_VOLATILE(x) (*((volatile __typeof__((x)) *)&(x)))
     785             : 
     786             : #if FD_HAS_ATOMIC
     787             : 
     788             : /* FD_ATOMIC_FETCH_AND_{ADD,SUB,OR,AND,XOR}(p,v):
     789             : 
     790             :    FD_ATOMIC_FETCH_AND_ADD(p,v) does
     791             :      f = *p;
     792             :      *p = f + v
     793             :      return f;
     794             :    as a single atomic operation.  Similarly for the other variants. */
     795             : 
     796   130931841 : #define FD_ATOMIC_FETCH_AND_ADD(p,v) __sync_fetch_and_add( (p), (v) )
     797   131337885 : #define FD_ATOMIC_FETCH_AND_SUB(p,v) __sync_fetch_and_sub( (p), (v) )
     798    45011349 : #define FD_ATOMIC_FETCH_AND_OR( p,v) __sync_fetch_and_or(  (p), (v) )
     799             : #define FD_ATOMIC_FETCH_AND_AND(p,v) __sync_fetch_and_and( (p), (v) )
     800             : #define FD_ATOMIC_FETCH_AND_XOR(p,v) __sync_fetch_and_xor( (p), (v) )
     801             : 
     802             : /* FD_ATOMIC_{ADD,SUB,OR,AND,XOR}_AND_FETCH(p,v):
     803             : 
     804             :    FD_ATOMIC_{ADD,SUB,OR,AND,XOR}_AND_FETCH(p,v) does
     805             :      r = *p + v;
     806             :      *p = r;
     807             :      return r;
     808             :    as a single atomic operation.  Similarly for the other variants. */
     809             : 
     810             : #define FD_ATOMIC_ADD_AND_FETCH(p,v) __sync_add_and_fetch( (p), (v) )
     811             : #define FD_ATOMIC_SUB_AND_FETCH(p,v) __sync_sub_and_fetch( (p), (v) )
     812             : #define FD_ATOMIC_OR_AND_FETCH( p,v) __sync_or_and_fetch(  (p), (v) )
     813             : #define FD_ATOMIC_AND_AND_FETCH(p,v) __sync_and_and_fetch( (p), (v) )
     814             : #define FD_ATOMIC_XOR_AND_FETCH(p,v) __sync_xor_and_fetch( (p), (v) )
     815             : 
     816             : /* FD_ATOMIC_CAS(p,c,s):
     817             : 
     818             :    o = FD_ATOMIC_CAS(p,c,s) conceptually does:
     819             :      o = *p;
     820             :      if( o==c ) *p = s;
     821             :      return o
     822             :    as a single atomic operation. */
     823             : 
     824   595297881 : #define FD_ATOMIC_CAS(p,c,s) __sync_val_compare_and_swap( (p), (c), (s) )
     825             : 
     826             : /* FD_ATOMIC_XCHG(p,v):
     827             : 
     828             :    o = FD_ATOMIC_XCHG( p, v ) conceptually does:
     829             :      o = *p
     830             :      *p = v
     831             :      return o
     832             :    as a single atomic operation.
     833             : 
     834             :    Intel's __sync compiler extensions from the days of yore mysteriously
     835             :    implemented atomic exchange via the very misleadingly named
     836             :    __sync_lock_test_and_set.  And some implementations (and C++)
     837             :    debatably then implemented this API according to what the misleading
     838             :    name implied as opposed to what it actually did.  But those
     839             :    implementations didn't bother to provide an replacement for atomic
     840             :    exchange functionality (forcing us to emulate atomic exchange more
     841             :    slowly via CAS there).  Sigh ... we do what we can to fix this up. */
     842             : 
     843             : #ifndef FD_ATOMIC_XCHG_STYLE
     844             : #if FD_HAS_X86 && !__cplusplus
     845             : #define FD_ATOMIC_XCHG_STYLE 1
     846             : #else
     847             : #define FD_ATOMIC_XCHG_STYLE 0
     848             : #endif
     849             : #endif
     850             : 
     851             : #if FD_ATOMIC_XCHG_STYLE==0
     852             : #define FD_ATOMIC_XCHG(p,v) (__extension__({                                                                            \
     853             :     __typeof__(*(p)) * _fd_atomic_xchg_p = (p);                                                                         \
     854             :     __typeof__(*(p))   _fd_atomic_xchg_v = (v);                                                                         \
     855             :     __typeof__(*(p))   _fd_atomic_xchg_t;                                                                               \
     856             :     for(;;) {                                                                                                           \
     857             :       _fd_atomic_xchg_t = FD_VOLATILE_CONST( *_fd_atomic_xchg_p );                                                      \
     858             :       if( FD_LIKELY( __sync_bool_compare_and_swap( _fd_atomic_xchg_p, _fd_atomic_xchg_t, _fd_atomic_xchg_v ) ) ) break; \
     859             :       FD_SPIN_PAUSE();                                                                                                  \
     860             :     }                                                                                                                   \
     861             :     _fd_atomic_xchg_t;                                                                                                  \
     862             :   }))
     863             : #elif FD_ATOMIC_XCHG_STYLE==1
     864  1086995802 : #define FD_ATOMIC_XCHG(p,v) __sync_lock_test_and_set( (p), (v) )
     865             : #else
     866             : #error "Unknown FD_ATOMIC_XCHG_STYLE"
     867             : #endif
     868             : 
     869             : #endif /* FD_HAS_ATOMIC */
     870             : 
     871             : /* FD_TL:  This indicates that the variable should be thread local.
     872             : 
     873             :    FD_ONCE_{BEGIN,END}:  The block:
     874             : 
     875             :      FD_ONCE_BEGIN {
     876             :        ... code ...
     877             :      } FD_ONCE_END
     878             : 
     879             :    linguistically behaves like:
     880             : 
     881             :      do {
     882             :        ... code ...
     883             :      } while(0)
     884             : 
     885             :    But provides a low overhead guarantee that:
     886             :      - The block will be executed by at most once over all threads
     887             :        in a process (i.e. the set of threads which share global
     888             :        variables).
     889             :      - No thread in a process that encounters the block will continue
     890             :        past it until it has executed once.
     891             : 
     892             :    This implies that caller promises a ONCE block will execute in a
     893             :    finite time.  (Meant for doing simple lightweight initializations.)
     894             : 
     895             :    It is okay to nest ONCE blocks.  The thread that executes the
     896             :    outermost will execute all the nested once as part of executing the
     897             :    outermost.
     898             : 
     899             :    A ONCE implicitly provides a compiler memory fence to reduce the risk
     900             :    that the compiler will assume that operations done in the once block
     901             :    on another thread have not been done (e.g. propagating pre-once block
     902             :    variable values into post-once block code).  It is up to the user to
     903             :    provide any necessary hardware fencing (usually not necessary).
     904             : 
     905             :    FD_THREAD_ONCE_{BEGIN,END}:  The block:
     906             : 
     907             :      FD_THREAD_ONCE_BEGIN {
     908             :        ... code ...
     909             :      } FD_THREAD_ONCE_END;
     910             : 
     911             :    is similar except the guarantee is that the block only covers the
     912             :    invoking thread and it does not provide any fencing.  If a thread
     913             :    once begin is nested inside a once begin, that thread once begin will
     914             :    only be executed on the thread that executes the thread once begin.
     915             :    It is similarly okay to nest ONCE block inside a THREAD_ONCE block. */
     916             : 
     917             : #if FD_HAS_THREADS /* Potentially more than one thread in the process */
     918             : 
     919             : #ifndef FD_TL
     920             : #define FD_TL __thread
     921             : #endif
     922             : 
     923        4722 : #define FD_ONCE_BEGIN do {                                                \
     924        4722 :     FD_COMPILER_MFENCE();                                                 \
     925        4722 :     static volatile int _fd_once_block_state = 0;                         \
     926        4722 :     for(;;) {                                                             \
     927        4722 :       int _fd_once_block_tmp = _fd_once_block_state;                      \
     928        4722 :       if( FD_LIKELY( _fd_once_block_tmp>0 ) ) break;                      \
     929        4722 :       if( FD_LIKELY( !_fd_once_block_tmp ) &&                             \
     930        2784 :           FD_LIKELY( !FD_ATOMIC_CAS( &_fd_once_block_state, 0, -1 ) ) ) { \
     931        2784 :         do
     932             : 
     933             : #define FD_ONCE_END               \
     934        2784 :         while(0);                 \
     935        2784 :         FD_COMPILER_MFENCE();     \
     936        2784 :         _fd_once_block_state = 1; \
     937        2784 :         break;                    \
     938        2784 :       }                           \
     939        2784 :       FD_YIELD();                 \
     940           0 :     }                             \
     941        4722 :   } while(0)
     942             : 
     943          36 : #define FD_THREAD_ONCE_BEGIN do {                       \
     944          36 :     static FD_TL int _fd_thread_once_block_state = 0;   \
     945          36 :     if( FD_UNLIKELY( !_fd_thread_once_block_state ) ) { \
     946           9 :       do
     947             : 
     948             : #define FD_THREAD_ONCE_END             \
     949           9 :       while(0);                        \
     950           9 :       _fd_thread_once_block_state = 1; \
     951           9 :     }                                  \
     952          36 :   } while(0)
     953             : 
     954             : #else /* Only one thread in the process */
     955             : 
     956             : #ifndef FD_TL
     957             : #define FD_TL /**/
     958             : #endif
     959             : 
     960             : #define FD_ONCE_BEGIN do {                       \
     961             :     static int _fd_once_block_state = 0;         \
     962             :     if( FD_UNLIKELY( !_fd_once_block_state ) ) { \
     963             :       do
     964             : 
     965             : #define FD_ONCE_END             \
     966             :       while(0);                 \
     967             :       _fd_once_block_state = 1; \
     968             :     }                           \
     969             :   } while(0)
     970             : 
     971             : #define FD_THREAD_ONCE_BEGIN FD_ONCE_BEGIN
     972             : #define FD_THREAD_ONCE_END   FD_ONCE_END
     973             : 
     974             : #endif
     975             : 
     976             : FD_PROTOTYPES_BEGIN
     977             : 
     978             : /* fd_memcpy(d,s,sz):  On modern x86 in some circumstances, rep mov will
     979             :    be faster than memcpy under the hood (basically due to RFO /
     980             :    read-for-ownership optimizations in the cache protocol under the hood
     981             :    that aren't easily done from the ISA ... see Intel docs on enhanced
     982             :    rep mov).  Compile time configurable though as this is not always
     983             :    true.  So application can tune to taste.  Hard to beat rep mov for
     984             :    code density though (2 bytes) and pretty hard to beat in situations
     985             :    needing a completely generic memcpy.  But it can be beaten in
     986             :    specialized situations for the usual reasons. */
     987             : 
     988             : /* FIXME: CONSIDER MEMCMP TOO! */
     989             : /* FIXME: CONSIDER MEMCPY RELATED FUNC ATTRS */
     990             : 
     991             : #ifndef FD_USE_ARCH_MEMCPY
     992             : #define FD_USE_ARCH_MEMCPY 0
     993             : #endif
     994             : 
     995             : #if FD_HAS_X86 && FD_USE_ARCH_MEMCPY && !defined(CBMC) && !FD_HAS_DEEPASAN && !FD_HAS_MSAN
     996             : 
     997             : static inline void *
     998             : fd_memcpy( void       * FD_RESTRICT d,
     999             :            void const * FD_RESTRICT s,
    1000   539575472 :            ulong                    sz ) {
    1001   539575472 :   void * p = d;
    1002   539575472 :   __asm__ __volatile__( "rep movsb" : "+D" (p), "+S" (s), "+c" (sz) :: "memory" );
    1003   539575472 :   return d;
    1004   539575472 : }
    1005             : 
    1006             : #elif FD_HAS_MSAN
    1007             : 
    1008             : void * __msan_memcpy( void * dest, void const * src, ulong n );
    1009             : 
    1010             : static inline void *
    1011             : fd_memcpy( void       * FD_RESTRICT d,
    1012             :            void const * FD_RESTRICT s,
    1013             :            ulong                    sz ) {
    1014             :   return __msan_memcpy( d, s, sz );
    1015             : }
    1016             : 
    1017             : #else
    1018             : 
    1019             : static inline void *
    1020             : fd_memcpy( void       * FD_RESTRICT d,
    1021             :            void const * FD_RESTRICT s,
    1022  1028923441 :            ulong                    sz ) {
    1023             : #if defined(CBMC) || FD_HAS_ASAN
    1024             :   if( FD_UNLIKELY( !sz ) ) return d; /* Standard says sz 0 is UB, uncomment if target is insane and doesn't treat sz 0 as a nop */
    1025             : #endif
    1026  1028923441 :   return memcpy( d, s, sz );
    1027  1028923441 : }
    1028             : 
    1029             : #endif
    1030             : 
    1031             : /* fd_memset(d,c,sz): architecturally optimized memset.  See fd_memcpy
    1032             :    for considerations. */
    1033             : 
    1034             : /* FIXME: CONSIDER MEMSET RELATED FUNC ATTRS */
    1035             : 
    1036             : #ifndef FD_USE_ARCH_MEMSET
    1037             : #define FD_USE_ARCH_MEMSET 0
    1038             : #endif
    1039             : 
    1040             : #if FD_HAS_X86 && FD_USE_ARCH_MEMSET && !defined(CBMC) && !FD_HAS_DEEPASAN && !FD_HAS_MSAN
    1041             : 
    1042             : static inline void *
    1043             : fd_memset( void  * d,
    1044             :            int     c,
    1045   240369989 :            ulong   sz ) {
    1046   240369989 :   void * p = d;
    1047   240369989 :   __asm__ __volatile__( "rep stosb" : "+D" (p), "+c" (sz) : "a" (c) : "memory" );
    1048   240369989 :   return d;
    1049   240369989 : }
    1050             : 
    1051             : #else
    1052             : 
    1053             : static inline void *
    1054             : fd_memset( void  * d,
    1055             :            int     c,
    1056   470713268 :            ulong   sz ) {
    1057             : # ifdef CBMC
    1058             :   if( FD_UNLIKELY( !sz ) ) return d; /* See fd_memcpy note */
    1059             : # endif
    1060   470713268 :   return memset( d, c, sz );
    1061   470713268 : }
    1062             : 
    1063             : #endif
    1064             : 
    1065             : /* C23 has memset_explicit, i.e. a memset that can't be removed by the
    1066             :    optimizer. This is our own equivalent. */
    1067             : 
    1068             : static void * (* volatile fd_memset_explicit)(void *, int, size_t) = memset;
    1069             : 
    1070             : /* fd_memeq(s0,s1,sz):  Compares two blocks of memory.  Returns 1 if
    1071             :    equal or sz is zero and 0 otherwise.  No memory accesses made if sz
    1072             :    is zero (pointers may be invalid).  On x86, uses repe cmpsb which is
    1073             :    preferable to __builtin_memcmp in some cases. */
    1074             : 
    1075             : #ifndef FD_USE_ARCH_MEMEQ
    1076             : #define FD_USE_ARCH_MEMEQ 0
    1077             : #endif
    1078             : 
    1079             : #if FD_HAS_X86 && FD_USE_ARCH_MEMEQ && defined(__GCC_ASM_FLAG_OUTPUTS__) && __STDC_VERSION__>=199901L
    1080             : 
    1081             : FD_FN_PURE static inline int
    1082             : fd_memeq( void const * s0,
    1083             :           void const * s1,
    1084             :           ulong        sz ) {
    1085             :   /* ZF flag is set and exported in two cases:
    1086             :       a) size is zero (via test)
    1087             :       b) buffer is equal (via repe cmpsb) */
    1088             :   int r;
    1089             :   __asm__( "test %3, %3;"
    1090             :            "repe cmpsb"
    1091             :          : "=@cce" (r), "+S" (s0), "+D" (s1), "+c" (sz)
    1092             :          : "m" (*(char const (*)[sz]) s0), "m" (*(char const (*)[sz]) s1)
    1093             :          : "cc" );
    1094             :   return r;
    1095             : }
    1096             : 
    1097             : #else
    1098             : 
    1099             : FD_FN_PURE static inline int
    1100             : fd_memeq( void const * s1,
    1101             :           void const * s2,
    1102    15052830 :           ulong        sz ) {
    1103    15052830 :   return 0==memcmp( s1, s2, sz );
    1104    15052830 : }
    1105             : 
    1106             : #endif
    1107             : 
    1108             : /* fd_hash(seed,buf,sz), fd_hash_memcpy(seed,d,s,sz):  High quality
    1109             :    (full avalanche) high speed variable length buffer -> 64-bit hash
    1110             :    function (memcpy_hash is often as fast as plain memcpy).  Based on
    1111             :    the xxhash-r39 (open source BSD licensed) implementation.  In-place
    1112             :    and out-of-place variants provided (out-of-place variant assumes dst
    1113             :    and src do not overlap).  Caller promises valid input arguments,
    1114             :    cannot fail given valid inputs arguments.  sz==0 is fine. */
    1115             : 
    1116             : FD_FN_PURE ulong
    1117             : fd_hash( ulong        seed,
    1118             :          void const * buf,
    1119             :          ulong        sz );
    1120             : 
    1121             : ulong
    1122             : fd_hash_memcpy( ulong                    seed,
    1123             :                 void       * FD_RESTRICT d,
    1124             :                 void const * FD_RESTRICT s,
    1125             :                 ulong                    sz );
    1126             : 
    1127             : #ifndef FD_TICKCOUNT_STYLE
    1128             : #if FD_HAS_X86 /* Use RDTSC */
    1129             : #define FD_TICKCOUNT_STYLE 1
    1130             : #else /* Use portable fallback */
    1131             : #define FD_TICKCOUNT_STYLE 0
    1132             : #endif
    1133             : #endif
    1134             : 
    1135             : #if FD_TICKCOUNT_STYLE==0 /* Portable fallback (slow).  Ticks at 1 ns / tick */
    1136             : 
    1137             : #define fd_tickcount() fd_log_wallclock() /* TODO: fix ugly pre-log usage */
    1138             : 
    1139             : #elif FD_TICKCOUNT_STYLE==1 /* RTDSC (fast) */
    1140             : 
    1141             : /* fd_tickcount:  Reads the hardware invariant tickcounter ("RDTSC").
    1142             :    This monotonically increases at an approximately constant rate
    1143             :    relative to the system wallclock and is synchronous across all CPUs
    1144             :    on a host.
    1145             : 
    1146             :    The rate this ticks at is not precisely defined (see Intel docs for
    1147             :    more details) but it is typically in the ballpark of the CPU base
    1148             :    clock frequency.  The relationship to the wallclock is very well
    1149             :    approximated as linear over short periods of time (i.e. less than a
    1150             :    fraction of a second) and this should not exhibit any sudden changes
    1151             :    in its rate relative to the wallclock.  Notably, its rate is not
    1152             :    directly impacted by CPU clock frequency adaptation / Turbo mode (see
    1153             :    other Intel performance monitoring counters for various CPU cycle
    1154             :    counters).  It can drift over longer period time for the usual clock
    1155             :    synchronization reasons.
    1156             : 
    1157             :    This is a reasonably fast O(1) cost (~6-8 ns on recent Intel).
    1158             :    Because of all compiler options and parallel execution going on in
    1159             :    modern CPUs cores, other instructions might be reordered around this
    1160             :    by the compiler and/or CPU.  It is up to the user to do lower level
    1161             :    tricks as necessary when the precise location of this in the
    1162             :    execution stream and/or when executed by the CPU is needed.  (This is
    1163             :    often unnecessary as such levels of precision are not frequently
    1164             :    required and often have self-defeating overheads.)
    1165             : 
    1166             :    It is worth noting that RDTSC and/or (even more frequently) lower
    1167             :    level performance counters are often restricted from use in user
    1168             :    space applications.  It is recommended that applications use this
    1169             :    primarily for debugging / performance tuning on unrestricted hosts
    1170             :    and/or when the developer is confident that applications using this
    1171             :    will have appropriate permissions when deployed. */
    1172             : 
    1173  1290686786 : #define fd_tickcount() ((long)__builtin_ia32_rdtsc())
    1174             : 
    1175             : #else
    1176             : #error "Unknown FD_TICKCOUNT_STYLE"
    1177             : #endif
    1178             : 
    1179             : #if FD_HAS_HOSTED
    1180             : 
    1181             : /* fd_yield yields the calling thread to the operating system scheduler. */
    1182             : 
    1183             : void
    1184             : fd_yield( void );
    1185             : 
    1186             : #endif
    1187             : 
    1188             : FD_PROTOTYPES_END
    1189             : 
    1190             : #endif /* HEADER_fd_src_util_fd_util_base_h */

Generated by: LCOV version 1.14